Real-world university course timetabling at the

Hana Rudová¹, Tomáš Müller², and Zuzana Müllerová³

¹ Masaryk University, Brno, Czech Republic ² Purdue University, West Lafayette, Indiana, USA

³ UniTime, s.r.o., Zlín, Czech Republic

ORTEC

International Timetabling Competitions

Educational timetabling competitions supported by PATAT

ITC 2002

- events, rooms, students
- enrollment-based timetabling
 - students in events cannot have any overlap
- ITC 2007
 - examination timetabling
 - post enrolment-based course timetabling
 - ITC 2002 extension
 - curriculum-based course timetabling
 - based on real-world instances from University of Udine

ITC 2011

- high-school timetabling
 - real-world instances

Real-world problems taken from the educational scheduling system UniTime

- Enrollment-based timetabling
 - students enroll in courses
- Hierarchical course structure how to split course into events/classes
 - students sectioning often needed
 - student sectioning must respect the course structure

Hierarchical course structure

				Preferences		Timetable	
	Limit D	Date Pattern	Time Pattern	Time	Room	Time	Room
IT 200	100	Software en	gineering				
Lecture	100	Full Term	3h				
Recitation	100	Full Term	1h				
Laboratory	100	Full Term	2h		Computer		
Lec 1	100	Full Term	3h			Th 8:25a-11:00a	Y 1
Rec 1	50	Full Term	1h			M 11:10a-11:55a	A 60
Lab 1	25	Full Term	2h		Computer	Th 4:40p-6:20p	D 28
Lab 2	25	Full Term	2h		Computer	Th 2:50p-4:30p	D 28
Rec 2	50	Full Term	1h			W 1:55p-2:40p	A 60
Lab 3	25	Full Term	2h		Computer	Th 1:00p-2:40p	D 28
Lab 4	25	Full Term	2h		Computer	Th 11:10a-12:50p	D 28
Required	Strop Preferred	ngly Prefer	red Neutra	l Discourag	jed Disco	Strongly Fron uraged Prohi	bited

- Time placement for classes
 - week pattern: required weeks
 - full term: weeks="1111111111111"
 - day pattern: required days of week
 - Monday: days="1000000"
 - start time period and length using 5 minutes periods
 - 7:00-8:00: start="84" length="12"
 - each possible placement specified with penalties

 course → classes → meetings
 MW 7:30-8:20 even weeks days="1010000" start="90" length="10" weeks="010101010101010"

Rooms

- capacity
- unavailable periods
- travel times matrix
 - students must be able to attend their classes when they are at different locations
- Room placement for classes
 - each possible placement specified with penalties

Distribution constraints on set of classes

TTC

Constraint	Opposite	Time	Days	Weeks	Room	Pairs
SameStart			-	-	-	\checkmark
SameTime	DifferentTime	\checkmark	_	_	-	\checkmark
SameDays	DifferentDays	—		-	-	\checkmark
SameWeeks	DifferentWeeks	_	_	\checkmark	-	\checkmark
SameRoom	DifferentRoom	_	_	_		\checkmark
Overlap	NotOverlap				-	
SameAttendees		\checkmark				\checkmark
Precedence		\checkmark		\checkmark	-	\checkmark
WorkDay(S)		\checkmark		\checkmark	-	\checkmark
MinGap(G)				\checkmark	-	\checkmark
MaxDays(D)		_		_	_	days over D
MaxDayLoad(S)				\checkmark	-	slots over S
MaxBreaks(R,S)		\checkmark		\checkmark	-	breaks over R
MaxBlock(M,S)		\checkmark		\checkmark	-	blocks over M

Course structure & generated distr. constraints

				Preferences		Timetable	
	Limit D	Date Pattern	Time Pattern	Time	Room	Time	Room
IT 200	100	Software en	gineering				
Lecture	100	Full Term	3h				
Recitation	100	Full Term	1h				
Laboratory	100	Full Term	2h		Computer		
Lec 1	100	Full Term	3h			Th 8:25a-11:00a	Y 1
Rec 1	50	Full Term	1h			M 11:10a-11:55a	A 60
Lab 1	25	Full Term	2h		Computer	Th 4:40p-6:20p	D 28
Lab 2	25	Full Term	2h		Computer	Th 2:50p-4:30p	D 28
Rec 2	50	Full Term	1h			W 1:55p-2:40p	A 60
Lab 3	25	Full Term	2h		Computer	Th 1:00p-2:40p	D 28
Lab 4	25	Full Term	2h		Computer	Th 11:10a-12:50p	D 28

For classes in parent-child relationship: SameAttendees

some institutions may replace it by NotOverlap

For classes in the same subpart: NotOverlap

• some institutions may remove it

Solution & optimization criteria

- Assignment of times and rooms to classes
- Optimization by minimizing penalties of
 - time placement
 - room placement
 - violated soft distribution constraints
 - student conflicts
 - two classes overlap in time or
 - are close to each other in rooms that are too far apart

Real-world data instances

- Data from the UniTime educational scheduling system
 - Europe
 - 🔹 Masaryk University 🖿
 - AGH University of Science and Technology
 - North and South America
 - Purdue University
 - Maryville University
 - 💿 Universidad Yachay Tech 📥
 - Asia
 - Lahore University of Management Sciences
 - İstanbul Kültür University C
 - Turkish-German University
 - Bethlehem University
 - Africa
 - University of Nairobi =

Rudová, Müller, Müllerová: Real-world university course timetabling at the ITC 2019

Europe: Masaryk University, Czech Republic

7 out of 10 faculties use UniTime: separated problems

Faculty of Informatics

- classical middle-size problem
 - 35 rooms
 - 500-600 classes
 - 1,500-1,700 students (more in fall semesters)
 - 10 classes per student
- simple course structure
 - lecture, seminars, 1 lecture + seminars
- classes once a week two hours typically
- one building mostly
- even/odd weeks classes
- pre-enrollment \Rightarrow rather high conflicts (550-680)
- single timetable manager

muni-fi problems

Europe: Masaryk University, Czech Republic

Faculty of Sport Studies: present study

muni-fsps-spr17

- 40 rooms, 550 classes, 850 students, 12 classes per student
 - solved optimally
- many buildings: travel times

small utilization - partially used sport facilities

- simple course structure
 - lecture, seminars, 1 lecture + seminars
- enrollments constructed from rigid curricula
 - 0-5 conflicts
- high number of weeks: 19
 - timetabling of sports for whole university during examination period as well
 - however: students from the Faculty of Sport Studies only
- single timetable manager

Faculty of Sport Studies: distance learning

muni-fsps-spr17c

- irregular timetable each Friday
 - one course split to single day classes using DifferentWeeks
- 14 weeks
- 30 rooms, 650 classes, 400 students, 33 classes per student

• gap 48%

Faculty of Sport Studies: distance learning + present study

- 21 weeks muni-fspsx-fal17
- 30 rooms, 1,600 classes, 1,150 students, 22 classes per student
 - gap 26 %

Europe: Masaryk University, Czech Republic

Faculty of Education: present study

muni-pdf-spr16

- 80 rooms, 1,500 classes, 3,450 students
- pairs of curricula for each student
 - Math-Physics, English-History, Physics-Music, ...
 - resulting in more student conflicts than "classical" curricula but less than pre-enrollments
- data input by several departmental managers
 - more diversified input

timetabling by single timetable manager

non-binarized distribution constraints MaxDayLoad, MaxBlock

Europe: Masaryk University, Czech Republic

More complex and larger problems

Faculty of Education: distance learning

muni-pdf-spr16c

- irregular timetable each Friday and Saturday
 - one course split to single day classes using DifferentWeeks
 - 13 weeks: different timetable for each or 2*13 days for 13 weeks
- 70 rooms, 2,500 classes, 2,900 students

140 minutes per meeting (present study: 85)

- partially included classes from present study
 - many courses have two configurations: distance learning, present study
 - distance learning solved on top of the timetable from present study
 - classes from present study fixed (1,100 out of 2,500 classes)

Faculty of Education: distance learning + present study muni-pdfx-fall17

• 90 rooms, 3,700 classes, 5,650 students

130 minutes per meeting

Europe: AGH Univ.Science and Technology, Poland

• Separate timetable for each faculty

agh problems

- 40-80 rooms, 450-1,850 classes, 1,600-2,250 students
- shared resources between faculties, students from different faculties Faculty of Humanities: 73% of classes for outside students
- Large-scale problem for the whole university included

agh-fal17

- 330 rooms, 5,100 classes, 7,000 students
- Rigid curricula with mandatory and elective courses only

• Coordinated timetabling process

- shared large lecture room timetabling
 - 75 rooms, 1,000 classes, 27,000 students, 3 classes per student very high utilization
 - solved optimally
- school and departmental timetabling
- shared computer laboratories
- changes: complete problem
- Problems from several (5/9) and all departments: huge problems
 - 80/220/770 rooms, 1,050/2,800/8,800 classes 13,500/35,000/38,500 stud.
- Rich course structure
 - introductory Biology for most freshmen
- Class several times a week at the same time and room
 - Monday, Wednesday, Friday at 7:30 am, 8:30 am, ... 4:30 pm
- Last-like semester enrollments
- Buildings at campus: travel times

solved optimally 72,000-79,000 hard class pairs İstanbul Kültür University, Turkey iku problems 210 rooms, 2,600-2,800 classes Lahore University of Management Sciences, Pakistan lums problems 70 rooms, 500-1,100 classes • multiple days for class: 1.8 per class

small problems: 15 rooms, 700 classes

SameAttendees takes care of travel times

visiting lecturers from Germany coming for a short time

Turkish-German University, Turkey

Rudová, Müller, Müllerová: Real-world university course timetabling at the ITC 2019

tg problems

18

Universities from Asia

Students by distribution constraints SameAttendees/NoOverlap

Asia: Bethlehem University, Palestine bet problems 60 rooms, 1,000-1,100 classes, 2,900-3,000 students • multiple days for classes: 1.3 days per class high utilization non-binarized distribution constraints MaxBlock, MaxDays North America: Maryville University, USA mary problems about 900 classes, 90 rooms, 3,500-5,000 students, 1.5 days per class simple course structure: lecture, seminars, 1 lecture + seminars South America: Universidad Yachay Tech, Ecuador yach-fal17 400 classes. 30 rooms. 800 students Africa: University of Nairobi, Kenya nbi-spr18 800 classes, 70 rooms, 2,300 students

Rudová, Müller, Müllerová: Real-world university course timetabling at the ITC 2019

Remaining universities

Position	Team	Early	Middle	Late	Total points
1.	Holm et al.	99	150	240	489
2.	Rappos et al.	72	94	156	322
3.	Gashi et al.	41	85	147	273
4.	Er-rhaimini	36	71	145	252
5.	Lemos et al.	17	32	30	79

Position	Author	Early	Middle	Late	Total points
1.	Dennis Holm	96	130	236	462
2.	Tomáš Müller	63	119	186	368
3.	Efstratios Rappos	57	60	123	240
4.	Edon Gashi	19	53	98	170
5.	Karim Er-rhaimini	16	41	92	149
6.	Alexandre Lemos	10	27	99	136
7.	I Gusti Agung Premananda	3	27	62	92
8.	Jason C.H.	2	10	40	52
9.	Marlúcio Alves Pires	6	15	22	43
10.	Henrik Sejer Pedersen	10	10	23	43
11.	Georgia Ioanna Makraki	0	3	10	13
12.	Eduardo Flores	0	3	1	4
13.	Jerry Wang	1	2	0	3
14.	Matthew Davison	0	0	2	2

- Almost 400 registered users from 60 countries
- 16 users uploaded one or more solutions of competition instances
- 25 users uploaded one or more solutions of competition or sample instances
- 44 users successfully validated one or more solutions

- MIP, matheuristic: Dennis S. Holm, Rasmus Ø. Mikkelsen, Matias Sørensen, Thomas R. Stidsen
 - MaCom / Technical University of Denmark, Denmark
- MIP, matheuristic: Efstratios Rappos, Eric Thiémard, Stephan Robert, Jean-François Hêche
 - HEIG-VD, Switzerland
- Simulated annealing: Edon Gashi, Kadri Sylejmani
 - University of Prishtina, Kosovo
- MaxSAT: Alexandre Lemos, Pedro T Monteiro, Inês Lynce
 INESC-ID / IST, Universidade de Lisboa, Portugal
- UniTime: Tomáš Müller
 - Purdue University, USA

- Conference on the Practice and Theory
 - of Automated Timetabling (PATAT)

ORTEC

ORTEC: optimization software and analytics solutions

Apereo Foundation: supporting open-source software for higher education

EURO working group on Automated Timetabling (EWG PATAT)

UniTime educational scheduling system

Faculty of Informatics, Masaryk University