
University Course Timetabling
Solver Evolution

PATAT 2016

August 2016 Tomáš Müller

Agenda

•University Course Timetabling: Solver Evolution
• Short introduction to UniTime
• Course timetabling problem
• CPSolver and its improvements since our last publication (2008)
• Data sets from Purdue University
• Conclusions

Introducing UniTime
What is UniTime?

• Comprehensive academic scheduling solution
• Four components: course timetabling, examination timetabling,

student scheduling and event management
• Open source, web-based, written in Java using modern technologies
• Distributed data entry and timetabling in multi-user environments
• Started as a research project back in 2001
• Became an enterprise system for many timetabling needs of a university

• USA, Czech Republic, Pakistan, Croatia, Poland, Turkey, Peru, Kuwait, Canada,
Malaysia, Spain, UAE, Palestine, Zambia, Kenya,…

• Apereo Foundation project 
since March 2015

Course Timetabling

What is Course Timetabling?
• The process of assigning times and rooms to classes

Constraints
• Rooms of various sizes, equipment and availability
• Faculty with requirements and preferences
• Courses that are to be offered, organized in a structure
• Students with their course demands (curricula, pre-registration, etc.)

Goal
• Assign classes in both time and space in a way that

• All hard constraints and other requirements are met
• All the desirable objectives are satisfied as much as possible

• Objectives: student conflicts, time and room preferences, class distributions,
fairness, travel, etc.

Courses

Classes are organized in a course structure
• Intuitive data entry and display of classes and their requirements
• Helps to define a way how students can enroll into the course
• Additional relations can be derived from the structure

Time
Date Patterns

• Weeks of instructions (All weeks, Even/Odd weeks, Week 5, …)

Time Patterns
• Possible time slots within a week

Space

Rooms
• Each department may have a different set of rooms
• Some times may be unavailable or given to a different department

• Room coordinates, travel times

Minimal Room Size
• Calculated from class limit and room ratio

Room Preferences
• Particular room or building
• Room group
• Room feature

Students

Each student has a list of courses he/she wants to attend
• Using pre-registrations, curricula, last-like enrollments, or a combination

Conflict: A student cannot take a combination of courses
• Because there is a (time) conflict

• Classes are offered at overlapping times or one after the other in rooms that are too far apart

• Or, there is not enough space in a non-conflicting combination of classes

CHM Lec

Class Time Periods

C
ou

rs
es

 /
C

la
ss

es

BIOL Lec 1

CHM Lab (b)

MA Lec (a) MA Lec (b)

STAT Lec 1

Chemistry students
need a lecture and
one of the two labs

Math students can choose,
unless they need statistics as well

Biology and chemistry lectures
are in a time conflicts

CHM Lab (a)

Distributions

Distribution Constraints
• Relationship between two or more classes

• Precedence
• Back-To-Back
• Same Room
• Same Days
• Meet Together
• Spread in Time
• At Most 6 Hours A Day
• Can Share Room
• …

• Set directly between classes / subparts or on an instructor

Problem Formulation

Model
• Variable: class
• Value: time and room placement

Hard Constraints
• Room size, sharing, availability
• No instructor / room can have two classes at the same time
• Required or prohibited preferences

Soft Constraints (Objectives)
• Time, room, and distribution preferences
• Student conflicts
• Additional criteria (too big rooms, back-to-back instructors, …)

Solver
Local-search based, however

• Operates over feasible, though not necessarily complete, solutions
• Feasibility is ensured automatically

Iterative Forward Search

• Guided by neighborhood selection, termination, and solution comparison heuristics
• Select variable and its value, unassigns conflicting variables with the new assignment

• Conflict-based Statistics
• If A=a is unassigned because of a B=c, a counter CBS[A≠a, B=c] is incremented
• Conflicts are weighted by their past occurrences

• Additional Variants
• MPP: original solution, modified problem → minimize differences
• Interactive: branch and bound of limited depth proposing schedule changes

while (termination.canContinue(solution)) {
 Neighbour n = neighbourSelection.select(solution);
 if (n != null) n.assign(solution);
 if (solutionComparator.isBetterThanBest(solution)) solution.saveBest();
}

Solver Evolution

Benchmark Data Sets
• From Purdue University, Fall 2007 and Spring 2007
• The results are presented on the combined problem 

(of 8 departmental problems)
• Over 2,400 classes, around 30k students and 200 rooms
• Available at http://www.unitime.org/uct_datasets.php in XML format
• Complete real world instances in an anonymized form (no names, etc.)

Experiment
• 10 independent runs for each solver build and (combined) instance

• since the paper (March 2008) till the one released with UniTime 4.1 (Dec 2015)

• Same configuration, solution evaluated using the latest solver

• Except of the last two data points where a different algorithm was used

Rudová, Müller, Murray (2011) Complex university course timetabling. Journal of Scheduling 14(2):187–207

Solver Evolution

More details are available in the paper.

2007 course timetabling
problems from Purdue

Solver Evolution

Results
• There was 50% improvement in the solution quality since UniTime 3.1

• 33% less student conflicts

• 15% improvement in time preferences

• 40% in room preferences

• 80% in distribution preferences

• Besides of these, there have been a lot of new constraints and other
features added into the solver over the years.

Rudová, Müller, Murray (2011) Complex university course timetabling. Journal of Scheduling 14(2):187–207

Solver Improvements

A lot comes from many small changes here and there
• There have been two major releases since 2008 and most of the solver

code has been rewritten at least once
• Making use of Java 5 generics and the ability to split the objective into

individual criteria in CPSolver 1.2
• More versatile assignment model and the ability to use multiple solver

threads in CPSolver 1.3

Distribution Preferences
• Partial satisfiability of soft distribution preferences
• Imagine a different room 

constraint between four classes

• Not satisfied (full penalty) → 83.3% satisfied
• Forward checking along hard constraints

A B

C D

Solver Improvements

Student Scheduling
• Initial sectioning using aka Carter’s homogenous sectioning 

(students with similar course selection are kept together)
• During or after the search: swap students between alternative classes

Improvements
• Move a single student 

into an alternative class 
(if there is space in it)

• Swap student between  
classes with different parents

Solver Improvements

Plug-in different algorithms and search heuristics
• Additional algorithms and heuristics available out of the box
• IFS, Great Deluge, Simulate Annealing
• For course timetabling: using GD after a complete solution is found,

never leaving the space of complete feasible solutions
• Besides of the usual neighborhoods, we also use a brach & bound of 

a limited depth  
(same that is used by the interactive solver to propose changes)

Ability to use parallel solver threads
• Two models

• Parallel threads share a common solution (proposing changes to it)
• Each thread works with its own solution (assignment)

• For course timetabling: second model is used, sharing properties of the
best solution ever found

Solver Evolution

More details are available in the paper.

2007 course timetabling
problems from Purdue

Conclusion

•Key points
• Open-source university timetabling system UniTime
• A very general course timetabling problem that fits many institutions
• (Large) benchmark data sets from Purdue University

• With the potential to have more data sets in the future
• A lot of work has been done on the solver since our last publication
• Solver framework can also be used to test new algorithms and heuristics

• Or on different timetabling problems

•For more details, please see me at the conference
• Or visit www.unitime.org

An online demo is available at http://demo.unitime.org

http://demo.unitime.org

