
Using UniTime to build optimised academic schedules

Tomáš Müller June 2025

Agenda

What is UniTime
• A tool for building academic timetables/timetables
• Main component is a solver

Artificial Intelligence
• Timetabling is a hard problem, with a lot of competing objectives
• Using a hybrid approach based on constraint programming (CP)

• CP is a subfield of AI focusing on problem-solving

UniTime Solver
• Constraint Programming
• Algorithm basics
• A few details, pro & cons, etc.

What is UniTime?

• Comprehensive academic scheduling solution

What is UniTime?

• Comprehensive academic scheduling solution
• Five components

Courses: time & rooms
- time preferences
- room requirements
- availability
- course structure
- avoid time clashes
- student course demand
- distributions

Instructors: teaching assignments
- teaching load
- qualifications / skills
- preferences
- course spreading

Events: room bookings
- course-related events
- personal schedule
- approval process
- unavailabilities

Exams: period & rooms
- minimise student conflicts
- period & room prefs
- distributions
- room sharing or splitting

Students: class schedule
- course requirements
- alternatives / free times
- reservations
- section balancing
- schedule quality

What is UniTime?

• Comprehensive academic scheduling solution
• Five components
• Open Source, web-based, written in Java using modern technologies

Distributed
Data Entry
Distributed
Data Entry

Web
Server(s)

Distributed
Data Entry
Distributed
Data Entry

Solver
Server(s)

MySQL / Oracle / Postgres Database

JGroups

JDBC JDBC

Online
Enrollments

Hibernate
L2 Cache

A
pa

ch
e

Se
rv

er

U
se

rs
 /

H
T

T
PS AJP

What is UniTime?

• Comprehensive academic scheduling solution
• Five components
• Open Source, web-based, written in Java using modern technologies
• Distributed data entry and timetabling in a multi-user environment

Centralised
Timetabling

Distributed
Data Entry
Distributed
Data Entry
Distributed
Data Entry

Academic Units
(Departments)

Timetabling Office (Registrar)

Time and room assignments

Curricula / Students
Room Availability
Instructors
Course CatalogClasses with their

requirements & preferences

What is UniTime?

• Comprehensive academic scheduling solution
• Five components
• Open Source, web-based, written in Java using modern technologies
• Distributed data entry and timetabling in a multi-user environment
• Using state of the art optimisation algorithms

ITC 2019
- course timetabling with students
- 3 sets of problems (10 each)
- 600+ registrations
- 20+ solvers
- 20+ publications

https://www.itc2019.org

Constraint Programming

Constraint Satisfaction Problem Θ = (V, D, C)
• V = {v1,v2,…, vn} is a finite set of variables
• D= {Dv1, Dv2, …, Dvn} is a set of domains

• Domain is a finite set of values
• C = {c1, c2, …, cm} is a set of constraints

• A constraint limits the combination of values that can variables
simultaneously take

• Solution is an assignment of all variables η: V → D
• That satisfy all the constraints from C

Optimisation Problem Θ’ = (V, D, C, f)
• f is an objective function

• That maps every partial feasible assignment to a number
• Usually expressed by soft constraints and penalties

Examina7ons Example

Example: Examination Timetabling
• Variables: individual examinations
• Domains: period and room for each exam
• Hard Constraints:

• Examination size ≤ room capacity
• Period and room requirements
• No two exams in the same room at the same period
• No student taking two exams during the same period
• …

• Soft constraints:
• Period and room preferences
• Back-to-backs
• Not more than 2 exams on

a day
• Large exams first
• …

Timetabling is hard

Exams: vertices
Students: edges
Colours: periods

⇒
Graph colouring

Example: Examination Timetabling
• Variables: individual examinations
• Domains: period and room for each exam
• Hard Constraints:

• Examination size ≤ room capacity
• Period and room requirements
• No two exams in the same room at the same period
• No student taking two exams during the same period
• …

• Soft constraints:
• Period and room preferences
• Back-to-backs
• Not more than 2 exams on

a day
• Large exams first
• …

Local Search

Search Space

.η
N(η)

In each iteration
• Generate a candidate solution y ∈ N(x)
• Evaluate a solution

• Discard when conflicting
• When accepted assign x = y

• Check if termination conditions are met

Acceptance criteria
• Hill Climbing F(y) ≤ F(x)
• Simulated Annealing P(accept) = e -ΔE/T

• Great Deluge F(y) ≤ Bound

Neighbours
• Swap period/room
• Swap exams
• Assign exam, resolve/unassign conflicts
• Limited-depth search
• Kempe chain, MIP, …

Local Search

Search Space

.η

In each iteration
• Generate a candidate solution y ∈ N(x)
• Evaluate a solution

• Discard when conflicting
• When accepted assign x = y

• Check if termination conditions are met

Acceptance criteria
• Hill Climbing F(y) ≤ F(x)
• Simulated Annealing P(accept) = e -ΔE/T

• Great Deluge F(y) ≤ Bound

Neighbours
• Swap period/room
• Swap exams
• Assign exam, resolve/unassign conflicts
• Limited-depth search
• Kempe chain, MIP, ….η’

N(η’)

Local Search

Search Space

.η

In each iteration
• Generate a candidate solution y ∈ N(x)
• Evaluate a solution

• Discard when conflicting
• When accepted assign x = y

• Check if termination conditions are met

Acceptance criteria
• Hill Climbing F(y) ≤ F(x)
• Simulated Annealing P(accept) = e -ΔE/T

• Great Deluge F(y) ≤ Bound

Neighbours
• Swap period/room
• Swap exams
• Assign exam, resolve/unassign conflicts
• Limited-depth search
• Kempe chain, MIP, …. η’

N(η’’)

.η’’

Solver Framework

Course Timetabling

Examination Timetabling

Instructor Scheduling

Student Scheduling

Problems Constraint-based Model

Variables Values

Constraints Criteria

Neighbourhoods

General

Problem Specific

Algorithms

IFS HC

SA GD

Solver Parameters

Configuration

UniTime Solver

Construction Phase
• Incomplete but feasible
• Pick an unassigned variable
• Find the best assignment

• Unassign conflicts
• Conflict statistics

• To prevent cycling
• Provides feedback when

over-constrained

Improvement Phase
• Complete and feasible
• Random selection of a

candidate change
• Various acceptance criteria

• HC, SA or GD
• Reheating
• Parameter adjustments
• Until time runs out

A ≠ a⇐{
3 × B = a
4 × B = c
2 x C = a

120 x D = a

Pros and Cons

Pros
• Usually very fast and scalable (compared to other methods)
• Flexible

• Easy to extend
• Exceptions are fairly easy to model

• Can start from an existing solution
• Distance from previous solution can be also minimised
• Can be used to provide suggestions (interactive timetabling)

Cons
• Cannot guarantee optimality
• Small changes can have large consequences
• Large changes may be expensive to make
• Often requires implementation of the model and at least a few

problem specific heuristics/neighbourhoods

Other Approaches

Mixed Integer Programming (Operations Research)
• Using boolean or integer variables
• All constraints must be linear
• Existing (commercial) solvers that are getting very good
• Can guarantee optimality or provide upper bounds
• Heuristic approaches needed for large problems

• Large neighbourhood search, fix & optimise, ruin & recreate

Comparison
• The first two places at ITC 2019 were using MIP solvers

• Both using some version of fix & optimise
• Problem had to be segmented into smaller sub-problems
• The winner solver can provide better results than UniTime

• But require lots of time and computational resources
• See ITC2019.org for more details

Conclusion

Thank you!

See www.unitime.org for more details about UniTime!

An online demo is available at https://demo.unitime.org

