

OPEN APEREO 2020 100% OPEN · 100% ONLINE June 15-19

Using UniTime to improve institutional efficiency

apereo

Tomáš Müller Zuzana Müllerová

Photo by Chris Barbalis on Unsplash

Using UniTime to improve institutional efficiency

- Introduction to UniTime
- Benefits of using UniTime
- Enrollment growth simulation from Purdue University

Introducing UniTime

What is UniTime?

UNITIME

- Comprehensive academic scheduling solution
- Five components: course timetabling, examination timetabling, student scheduling, instructor scheduling, and event management
- Open source, web-based, written in Java using modern technologies
- Distributed data entry and timetabling in a multi-user environment
- Apereo project since March 2015

Course Timetabling

What is course timetabling?

- The process of assigning times and rooms to classes
- Creating a course timetable for students
- Respecting various restrictions and preferences
 - Courses: size, room equipment, structure, ...
 - Instructors: availability, preferred times, ...
 - Students: curricula, pre-registrations, ...
 - Other: number of rooms available and their sizes, ...
- It is a difficult optimization problem

							Preference	35	
	Limit	Date Pattern	Minutes	Per Week	Time Pattern	Time	Room	Distribution	Instructor
MA 170 STAT 170	40	Statistics Introductory	statistics						
Lecture	40	Full Term		50	1 x 50		Classroom		
Laboratory	40	Full Term		150	3 x 50		EDUC CompPr	Same Room	
Lec 1	40	Full Term		50	1 x 50		ThtrSeat Classroom		G. Newman
Lab 1	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith
Lab 2	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith

Student Scheduling

What is student scheduling?

Enroll students to classes

in a way that maximizes the ability for students to get the courses they need

I. Student fills in course requests

- Including priorities, alternatives, and their own time availability
- 2. System provides a schedule that best meets student needs
- 3. Students have the ability to modify their schedule

	e		Student Scheduling User: Student, Imogene Eugenia (A) Click here to log out	Assis	sta 2019 ange ti	nt (P) 10 50	WL)
Degree Pla	n Curre	ent Registration		<u>B</u> uild Sc	hedı	ıle	+
Course R	eques	S					
1. Priority	ENGR 13	100	12664-004 × 14811-005	× PX		\downarrow	Û
1. Alt	ternative	Alternative to ENGR 13100		۶X			
2. Priority	MA 1650	D		\$ 0 X	1	\downarrow	Û
1. Alt	ternative	MA 16100		+ > X			
3. Priority	CHM 115	00	Traditional ×	\$ 0 X	1	\downarrow	Û
1. Alt	ternative	PHYS 17200		+ > X			
4. Priority	ENGL 10	500		\$ 0 X	1	\downarrow	Û
1. Alt	ternative	SCLA 10100		\$ 0 X			
2. Alt	ternative	ENGL 10800		+>×			
5. Priority	PSY 1200	00	Hybrid ×	\$ 0 X	1	\downarrow	Û
1. Alt	ternative	SOC 10000	Hybrid ×	+>×			
6. Priority	Free MW	F 7:30a - 8:30a		۶X	1	\downarrow	Û
7. Priority				۶X	1	\downarrow	Û
8. Priority				۶X	1	\downarrow	Û
9. Priority				۶X	1	\downarrow	Û
10. Priority				۶X	\uparrow	\downarrow	Û
11. Priority				×۹	1	\downarrow	Û
12. Priority	Course w	ith the lowest priority.		×۹	1	\downarrow	Û
	•		Tip: Use Esc to hide suggestions, Ctrl+L (or Ctrl+Alt+L in some	browsers) to s	how su	igges	stions.
Substitute	e Cours	Se Requests (used or	nly if a course requested above is not available	/			e
1. Substitute	FR 10100	1		+ P X		4	
2. Substitute				× Q		4	
3. Substitute				ρx	T		Ø
Degree Pla	n Curre	ent Registration		<u>B</u> uild Sc	hedu	le	•

apereo

Benefits

Why is it needed?

- Help use limited resources more efficiently
- Make process more transparent and sustainable
- Fairness and satisfaction with the timetable
- Minimize student conflicts to help students receive degrees on time
- Ability to adapt to changes (curriculum, facilities, etc.)
- What-if scenarios

Use Resources Efficiently

Effective use of teaching space

- Room requirements and preferences
- Room location, travel times between classes
- Higher utilization than when the timetable is done by hand
- Minimization of excess space (more space for other activities, or for schedule changes)

Instructor assignments

- Easier to meet instructor needs
- Automatic checking for conflicts
- Minimize travel times
- Automated assignment of instructors (typically TAs) to classes
 - Teaching load
 - Qualifications & course preferences
 - Availability & time preferences
 - Minimizing the need for new hires

Transparent Process

Transparency & Fairness

- All preferences and requirements that have been used to build a timetable are available in the system
- The "computer" is equally fair to all the interested parties
- Additional constraints to improve fairness
 - Equal balancing of good/bad times between departments
 - Normalization of time preferences
 - ...

Sustainability

- Requirements and preferences stay in the system and are reused next semester
- If there is a new scheduling person, the knowledge transfer is easier
- Degree program (and other) changes are easier to do
- Certain level of robustness can be included in the timetable
- Help with making schedule changes

Student Scheduling

Helps students get the courses they need

- Build course schedule that minimizes conflicts between courses
- Available space can be monitored during pre-registration
- Conflicts can be resolved before students make adjustments

Equalize opportunities, improve fairness, reduce stress

- Students coming in later have the same chance to get the courses
- All students get their top priority courses / minimal credits
- Substitutive courses, free times, section preferences

Balanced sectioning, student schedule quality, accommodations

Critical courses

• For courses with excess demand, help prioritize students who need the course in order to make progress in their degree

Certain students may be given higher priority

• Athletes, honor students, students near graduation, etc.

Minimizing Disruptions

Small changes

UNITIME

- E.g., new section and/or larger room needed
- One class/course is changed at the time
- All decisions are on the operator, UniTime provides suggestions
 - Available rooms, possible class swaps, etc.

Larger changes

- E.g., a building goes offline, reduced room capacities due to the social distancing
- Minimal Perturbation Problem mode of the solver
 - Solution to a new (modified) problem
 - As close as possible to the previous (published) solution
- Various flavors
 - Different weights on different types of changes
 - Some changes may not be allowed (e.g., times are fixed)

What-if Scenarios

Many various scenarios can be considered

- Building or room should become unavailable
- Change in time patterns
 - (e.g., more evening classes, unified class start times)
- Going from semesters to trimesters
- Reducing room capacity to allow for social distancing
- Planning for future (enrollment growth, etc.)

Running simulations

- Starting from historic data, with adjustments
- The whole term (academic session) can be duplicated
 - Or copied over to a separate (test) instance of UniTime
- There can be multiple copies of the same academic session
- XMLs exports/imports or Scripts can be used to quickly manipulate the data

Enrollment Growth Simulation

Purdue University Quick Facts

Enrollment Fall 2019

• Total	44,55 I
 Professional 	942
 Graduate 	9,963
 Undergraduate 	33,646

Courses Offered Annually ~8,260

Simulation

- Enrollment growth to about 48,000 by 2025
- Projections based broken down by major

Simulation Input Data

Fall 2025 Projection

Input Data

- Fall 2019 data (UniTime)
 - Course timetable and student course demands
 - Including course structure and existing requirements/preferences
- Recruitment targets, broken down by major (Admissions)
 - Continuing student enrollment projections
 - Predictive modeling, considering degree programs, historic data, etc.
 - \Rightarrow Number of students in each major and classification

Area	Major	01	02	03	04	05	06	07	08	Total	Area	Major	01	02	03	04	05	06	07
Μ		312	162	280	237	324	278	309	448	2350	М		492	217	313	253	333	292	374
Μ	ACCT	7	3	13	17	38	38	35	100	251	М	ACCT	7	6	14	19	34	36	40
Μ	ECON	7	8	9	22	28	37	39	34	184	М	ECON	8	12	10	27	25	40	46
Μ	FINC	6	16	22	34	84	74	74	101	411	М	FINC	10	14	21	34	76	75	86
Μ	GMGT	10	4	11	24	39	29	16	9	142	М	GMGT	12	11	17	20	29	31	36
М											М								

Fall 2019 Census

08 Total

481 2755

242

209

437

188

86

41

121

32

Course Enrollments

Estimate course enrollments, adjust section limits / counts

- Automatically computed in UniTime, using the enrollment projections
 - For each course, Fall 2019 enrollments counts are scaled by the new enrollment counts (individually for each major and classification)
- Determine how increased demand would be accommodated by the planned course offerings
 - \Rightarrow Larger sections, more sections, a mix of both

Course	Enrollment Census 2019	Projected Demand 2020	Projected Demand 2023	Projected Demand 2025
ENGL 106	473	480	558	574
CS 242	75	122	240	316
STAT 355	59	92	185	230
STAT 190	569	599	684	710
CHM 115	2,561	2,526	2,643	2,675

Course Timetabling

Running the course timetabling solver

- Build a timetable to determine where teaching space and faculty shortages may occur
 - Various scenarios can be run to determine impact of future plans
 - E.g., extending teaching days (more evening classes), building new room(s)
- The simulated timetable validated using student scheduling
 - Using Fall 2019 course requests scaled to match projected data

	Fall 2019 - actual	Fall 2020 - base simulation	Fall 2020 with extended day	Fall 2023 simulation with 1-180 LALR	Fall 2023 with 1-480 LLR, 2-180 LALR, 2-60 PC Labs, 2-30 Linux Labs	Fall 2025 with 1-180 LALR	Fall 2025 with 1-480 LLR, 2-180 LALR, 2-60 PC Labs, 2-30 Linux Labs
Assigned sections	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
	(8,527)	(8,693)	(8,693)	(8,807)	(8,807)	(8,917)	(8,917)
Student conflicts	distance:650,	distance:579,	distance:524,	distance:627,	distance:592,	distance:820,	distance:552,
	hard:1199	hard:1256	hard:1035	hard:1153	hard:1143	hard:1195	hard:1090
Time preferences	90.55%	89.82%	90.09%	89.63%	89.61%	89.35%	89.38%
	(20,883)	(22,920)	(22,374)	(23,491)	(23,555)	(24,281)	(24,219)
Room preferences	86.36%	86.95%	86.99%	86.00%	86.24%	85.68%	85.82%
	(1,632)	(1,598)	(1,557)	(1,761)	(1,691)	(1,842)	(1,779)

Simulation Reports

Various reports can be generated from the results

• Example: room utilization report for the 4 largest lecture halls

Room	Capacity	Fall 2019 - actual frequency	Fall 2020 - base simulation frequency	Fall 2020 with extended day frequency	Fall 2023 simulation with 1-180 LALR frequency	Fall 2023 with 1-480 LLR, 2-180 LALR, 2-60 PC Labs, 2-30 Linux Labs frequency	Fall 2025 with 1-180 LALR frequency	Fall 2025 with 1-480 LLR, 2-180 LALR, 2-60 PC Labs, 2-30 Linux Labs frequency
NEW ROOM	480					87.9%		88.7%
WTHR 200	480	88.8%	97.7%	92.7%	96.7%	94.7%	98.7%	97.7%
CL50 224	470	88.7%	94.7%	83.7%	95.7%	89.7%	94.7%	92.7%
EE 129	468	90.7%	93.7%	86.7%	94.7%	88.8%	96.7%	92.7%
LILY 1105	446	82.1%	95.7%	83.9%	85.9%	74.0%	86.8%	84.1%

Simulation Results

Outcomes

- Identification of areas where resources need to be adjusted
- Ensure there are enough spaces of correct type and size
- Evaluation of utilization rates
- During what timeframe is more space going to be needed?
- Faculty needs
- Curriculum changes
- Budgets requests, capital planning, policy recommendations, etc.
- Balancing demand between Fall and Spring
- Contingency plans are made for when not enough seats can be offered (e.g., increase space in substitute courses)

OPEN APEREO 2020 100% OPEN · 100% ONLINE June 15-19

Thank you!

Zuzana Müllerova

mullerova@unitime.org

UniTime, s.r.o.

Tomáš Müller

muller@unitime.org

Purdue University

For more details about UniTime, see https://www.unitime.org

