
Credit: Photo by Loïc Romer

Internationalization
of UniTime

Zuzana Müllerová, Tomáš Müller

Credit: Photo by Olivier Bousquet

Agenda

Agenda
• Internationalization in UniTime

• A few technical details
• Providing translations

• Using Zanata
• Build using different / multiple languages

• Other considerations

This presentation is available at www.unitime.org/present/apereo18-internationalization.pdf

Credit: Photo by Tourisme Montréal, Stéphan Poulin

Technical Details

Internationalization
• Mixture of GWT / JSP pages, with backend services (solver, etc.)

• Bundles are using the Constant / Messages interfaces

• Translations are plain old .properties files
GwtMessages.java

GwtMessages_cs.properties (in UTF-8)

Credit: Photo by Tourisme Montréal, Stéphan Poulin

Technical Details

GWT client code
• GWT Constant / Messages Interfaces for the GWT client code

• Methods of the created interface return the appropriate language

• A permutation is compiled for each browser and language/country

• Configured in UniTime.gwt.xml

• Default locale in Application Configuration (unitime.locale)
• Can take browser’s settings, user preferences,

or locale=XX URL parameter

For example https://demo.unitime.org/UniTime/login.do?locale=cs

Credit: Photo by Tourisme Montréal, Stéphan Poulin

Technical Details

Server code
• Same approach, but using Localization class to create an instance of

the Messages / Constants interface

• Implemented using Java proxies

Credit: Photo by Tourisme Montréal, Stéphan Poulin

Technical Details

JSP code
• Using localization tags, or calling the interface methods directly

• Both Constants and Messages can be used

Credit: Photo by Susan Moss

Zanata

Using Zanata
• Different UniTime versions, one “document” for each class

• Translations can be provided online or offline

• Integrates with Maven

• Permissions (users are associated with one or more languages)

• Czech, French, Polish,
 Turkish, and a few other
 (less complete)

See https://translate.zanata.org/project/view/unitime for more details.

Credit: Photo by Susan Moss

Zanata

Making a build
• Clone UniTime git repository
• Add language in UniTime.gwt.xml

• Pull the translations from Zanata
• Import translations (makes sure they are UTF-8 encoded)
• Build UniTime

• Push to Zanata
• Needs user name and an API key

git clone https://github.com/UniTime/unitime.git
mvn zanata:pull -Dzanata.locales=cs
ant -Dlocale=cs import-translations
ant build

ant -Dlocale=cs export-translation
mvn zanata:push -Dzanata.user=jan.novak -Dzanata.key=12345
mvn zanata:push -Dzanata.locales=cs -Dzanata.pushType=trans

<extend-property name="locale" values="cs"/>

Credit: Photo by Susan Moss

Terminology

Translation and Terminology
• There is a set of terms that express the core concepts in UniTime,

such as
• Instructional Offerings vs. Course Offerings
• Subject Areas vs. Academic Areas
• Scheduling Subparts
• Classes
• …

• Use UniTime in English before translating it

Credit: Photo by Environment and Climate Change Canada

Other Considerations

Other Considerations
• Date format (d.m.y vs m/d/y), time format (12/24 hours)

• Time grid (start time, end time, increments)

• First day of the week

• Horizontal / Vertical

• …

Credit: Photo by Environment and Climate Change Canada

Other Considerations

Other Considerations
• Constants for the language-dependent properties (e.g., en_UK)

• Custom properties for the rest (we have over 450 properties)

• Defaults in the ApplicationProperty enum

• Custom properties file

• Application Configuration page

• May be different for each
term/campus

Credit: Photo by Loïc Romer

Contributions

Outside Contributions to Internationalization
• Sponsoring a feature

(e.g., week starting on Sunday)

• Testing localization

• Translations into other languages using Zanata

(e.g. Polish, Turkish, …)

• Minimum contributions of code

Credit: Photo by Tourisme Montréal, Stéphan Poulin

TO DOs

More things to do…
• More languages

• Deal with inflations in other languages

• Internationalization of older pages

• Documentation, manuals, online help

• Text direction (right-to-left)

• Other calendars

• E.g., Hijri

Credit: Photo by Tourisme Montréal, Stéphan Poulin

Lessons Learned

Lessons Learned
• Terminology is very important (and hard to change later)

• Subject vs Course vs Offering

• Professors do not like being called instructors (teachers is fine)

• Write code with localization in mind

• Use type-safe techniques that rely on strongly-typed Java interfaces

Credit: Photo by Alain Régimbald

Conclusion

Internationalization
• Started with all the texts hard-coded (not a good approach)
• All the new (GWT-based) code is localizable
• Some of the older pages still need to be localized
• Using GWT-like approach all across the application
• Zanata makes it easier to let others translate and share the translations
• Terminology needs good care and consideration

For more details, please see us at the conference
• Getting Started with UniTime (Sunday, 9 am in Liszt)

• UniTime: State of the Project (Monday, 2:30 pm in Debussy)

• UniTime Introduction (Monday, 5:30 pm, Showcase Reception)

• Student Scheduling at Purdue University (Tuesday, 11:15am in Debussy)

• Internationalization of UniTime (Wednesday 11:00 am in Debussy)

See http://help.unitime.org/Localization for more details.

