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Abstract This paper presents an innovative approach to curriculum-based
timetabling. Curricula are defined by a rich model that includes optional
courses and course groups among which students are expected to take a sub-
set of courses. Transformation of the curriculum model into the enrollment
model is proposed and a local search algorithm generating corresponding en-
rollments is introduced. This enables curriculum-based timetabling in any
existing enrollment-based course timetabling solver. The approach was im-
plemented in a well established enrollment-based course timetabling system
UniTime. The system has been successfully applied in practice at the Faculty
of Education at Masaryk University for about 7,500 students and 260 curric-
ula. Experimental results related with this problem are demonstrated for two
semesters.

Keywords Course timetabling · Curriculum-based timetabling · Local
search · UniTime

1 Introduction

Curriculum-based timetabling belongs to the class of university course time-
tabling problems (Burke and Petrovic, 2002; Lewis, 2008). Much research has
been done in the area of curriculum-based timetabling (Di Gaspero et al,
2007; Bonutti et al, 2012), typically using a base curriculum model. In this
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model, besides the usual classes, instructors and rooms tied together by various
constraints (e.g., a room must be of large enough size, or an instructor can only
teach one class at a time), there is a set of curricula defined. Each curriculum
contains a list of courses that are to be attended by the same students (students
of the curriculum). This is usually backed up by a hard constraint ensuring
that classes of the same curriculum cannot overlap in time.

In the real world (McCollum, 2007), on the other hand, students are usually
not required to attend all courses of a curriculum. Besides compulsory courses
(courses that students must, or at least are expected, to take), there are elective
courses (usually forming groups, where students are expected to take n of m
courses) and optional courses that students may or may not take. Moreover, for
some courses, students may decide during which semester they will take them.
Typically, compulsory and elective courses cannot overlap in time, except there
may be some overlaps of elective courses that are of the same group. For
instance, if students are to take one of the given three courses, these three
courses can be timetabled during the same time. Optional courses are usually
only required to be at times that are not blocked by some other compulsory
or elective course of the same curriculum. It is important to note here that
each course may be present in multiple curricula, and it may be required for
some curricula and only optional for another.

The whole problem is usually made even more complicated by the fact
that courses tend to have multiple course sections (Hertz, 1991; Rudová et al,
2011). Courses with many students are usually split into several seminar groups
and/or lectures. Furthermore, a course can be offered in various configurations
(e.g., a lecture only, a lecture and a lab), with multiple lectures and labs avail-
able and some restrictions on what combinations of lecture and lab students
are allowed to take. There can also be some mapping between curricula and
specific classes of a course (e.g., the first lecture of a course may be reserved
for students of an engineering major), but often there is none. Even simple
course sectioning into several seminars leads to the inability to map curricula
onto pairs of classes with no overlap in time. This is a very important aspect
of the problem which must lead to more complex models and solutions.

1.1 Our Work

In our work, we rely on the UniTime1 university timetabling system, con-
taining an enrollment-based course timetabling solver which already deals
with course sections and configurations of courses. In UniTime, students are
assigned to classes based on student course demands (e.g., taken from pre-
enrollment or from a previous semester) in a way that tries to keep students
with similar courses together (Müller and Murray, 2010). A class is under-
stood to be a part of the course which needs a time and a room assignment
(e.g., each of the seminar groups or a lecture is a class). The course timetabling

1 http://www.unitime.org
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process looks for a proper assignment of times and classrooms to classes with
the goal to optimize a set of criteria. It aims to minimize the number of stu-
dent conflicts, i.e., cases when students are not able to attend classes due to
their overlap in time or due to their placement of one right after the other in
rooms that are too distant. Student conflicts can be decreased by assignment
of a proper time as well as by swapping students between alternative classes
or configurations of a course. Other important criteria include time and room
preferences and restrictions for assignment of particular classes as well as dis-
tribution preferences specifying relations among several classes. A detail de-
scription of UniTime features and algorithms as well as its application to the
Purdue University timetabling problem can be found at (Rudová et al, 2011).

This paper introduces a curriculum model which is applicable to solve
real-life curriculum-based timetabling problems at large universities such as
Masaryk University (Czech Republic) or Purdue University (USA). We also
propose a transformation of this curriculum model into an enrollment model
where each course is associated with a set of enrolled students (Lewis et al,
2007). A hybrid model of combining curricula with historic student enrollment
data is also possible and briefly discussed in this paper. We describe a local
search algorithm (Hoos and Stützle, 2005) which allows us to generate student
course demands for the enrollment timetabling problem which respect char-
acteristics of curricula. Given the curriculum model, transformation into the
enrollment model, and the algorithm for generating student enrollments, it is
possible to enable curriculum-based timetabling in any existing enrollment-
based timetabling solver.

The proposed curriculum model and algorithm is implemented in UniTime
and an application of this approach is presented on real-life curriculum-based
timetabling problems from the Faculty of Education at Masaryk University.
Timetables generated by UniTime have been used at the college in practice
since Fall 2011. Here we have about 260 different curricula for about 7,500
students. This corresponds to timetabling of present, combined and lifelong
forms of study. Overall computational results are presented on problems from
two semesters, Fall 2011 and Spring 2012. We present results of the curricula
to enrollments transformation for each of the three different forms of study,
each representing a curriculum model with different characteristics. The num-
ber of curricula is very high since most of the programs in the college combine
two different majors in order to educate teachers in two different subject areas
(e.g., Math and Physics or Physics and Chemistry). A curriculum is defined
for each allowed combination. This makes the overall timetabling very com-
plex since there is a wide range of combinations with largely varying numbers
of students in them. In particular, there are many combinations such as Math
and Music, with only a few students, whose curriculum must still be respected.
The initial requirement actually was to create timetables for compulsory and
elective courses of all curricula with almost no student conflicts. In the pa-
per, we demonstrate that timetabling of about 1,500 classes was possible with
only about 100 student conflicts, i.e., 99.8 % of student course demands in
curricula were satisfied for compulsory and elective courses. This was accom-



panied by consideration of a set of other problem characteristics including
time and room preferences on individual classes as well as various relations
among classes. During the timetabling process, the solution generated by fully
automated methods was also interactively adjusted to reflect additional needs
of the faculty and the students. The main results for the initial automated
timetables, as well as for the final interactively corrected timetables that were
used at the Faculty of Education in practice, are presented for both semesters.

In the following section we propose a curriculum model and the next chap-
ter specifies a possible mapping between curriculum and enrollment models as
a transformation of curricula to student course demands. Consequently we de-
scribe a local search algorithm that computes student course demands. Finally
we provide experimental results from the application of the resultant system
at the Faculty of Education.

2 Curriculum Model

We propose a curriculum model that is able to tackle an advanced set of
real-life characteristics of timetabling problems. A curriculum, usually tied to
students by their academic area (program of study) and one or more majors
(further specializations) is split between different semesters. The tuple speci-
fying curriculum and semester is called classification. A number of students is
associated with each classification. This number may be known or may be esti-
mated from previous semesters using various student projections. In addition
to the number of students, each curriculum has an associated set of courses
defined for each semester. Each course has a percentage which evaluates to
the number of students that are expected to attend the course out of all those
in the classification. These course percentages may also be replaced by the
number of students from the classification expected to attend the course.

To model the relations between courses in a curriculum, various groups
are defined. Each group contains a subset of courses in the curriculum. It
is possible to create two types of groups. A conflicting group expresses that
students are expected to take all courses in the group. A non-conflicting group
indicates that students are expected to attend just one course in the group.
During timetabling this means that courses in a non-conflicting group may
overlap in time. Courses in a conflicting group must be timetabled so that all
students in one course are able to attend all other courses in the conflicting
group.

An illustrative example of a curriculum is presented in Figure 1. A bache-
lors degree in the curriculum is offered over three years. Students are required
to take courses A and B during their first year of study, C and D during their
second year of study, and E and F during their last year of study. They are
also expected to take course G either the first or the second year (though
80 % of students usually take the course during the second year). Similarly,
they can take course H during their second or third year. During the first



Fig. 1 Example of a curriculum prepared in UniTime timetabling system.

year, they should also take I1 or I2 (note that these two courses are put into
a non-conflicting group “I1 or I2”). During their second year, they should also
take two of courses J1, J2, J3 (this is solely modeled by the curriculum course
percentages). There are also optional courses L1 and L2, which are either not
taken at all or are taken together (this is modeled by the conflicting group “L1
and L2”).

It is also possible for a course to be in multiple groups, as demonstrated in
Figure 2. Due to the transitive closure relationship between groups discussed
in Section 2.1, this allows modeling cases where a student needs to take a
certain pair of courses (M1 together with M2 or N1 together with N2 or O1
together with O2) or other more complex cases.



Fig. 2 Example with courses in multiple groups.

Please note that a curriculum may not contain all courses that a student
in the curriculum may take during his/her study, but only courses that are
offered in the term that is to be timetabled. For instance, if we are creating
the Spring 2012 timetable, only courses that are offered in Spring 2012 will
be present, but there will still be students associated with a curriculum that
are in different years or semesters of their study. Also, if there has been a
curriculum change starting in Spring 2011, students in their third year will
take courses from the old curriculum whereas students in their first and the
second years will need to follow the new curriculum.

A typical curriculum for the combined form of masters study taking two
years is shown in Figure 3. In the Course Projections table, the columns titled
01 and 02 contain the expected enrollments for each course and semester. The
columns titled Last are optionally displayed columns which indicate the num-
ber of students enrolled in the course during the last-like semester (Fall 2010).
Courses in the conflicting groups P 01 and P 02 represent compulsory courses
in the first and the second year respectively. Courses in the non-conflicting
groups PV 01, PVJ 01, PV 02 represent elective courses. Students in this cur-
riculum are expected to take two electives in the first year (one from each
group PV 01 and PVJ 01) and only one elective in the second year (group
PV 02). Optional courses do not belong to any group (column Group in the
Course Projections table is empty). Note that the groups P 01 and P 02 are
not necessary as all the courses in these two groups expect attendance by all
the first year or second year students respectively.

2.1 Formal Model

More formally, there is a set of courses c ∈ Ca for each curriculum a ∈ A. The
set of all courses in the whole timetabling problem corresponds to

⋃
a∈A C

a.

Since a course may appear in more than one curriculum, sets Ca and Cb for
curricula a, b ∈ C may possibly have a non-empty intersection. A curriculum
a is associated with student counters xa1 , x

a
2 , . . . x

a
n where n is the number of

semesters and xai is the number of students in curriculum a and semester i.



Fig. 3 Example of curriculum from Fall 2011 at the Faculty of Education.



Note that the tuple (a, i) defines a classification. To simplify formulations, we
define the set AI as a set of all classifications (a, i).

Furthermore, there is a matrix with values eac,i between 0 and 1. For each
course c and semester i, the value eac,i defines the proportion of the number of
students xai expected to attend the course c. Each course c ∈ Ca is expected
to be attended by eac,ix

a
i students from classification (a, i). Finally, there are

groups of courses Ga
1 ⊆ Ca, . . . , Ga

k ⊆ Ca representing conflicting groups and
Ha

1 ⊆ Ca, . . . ,Ha
l ⊆ Ca representing non-conflicting groups in the curriculum.

It is also important to mention that for each pair of courses c, d ∈ Ca,
we expect the following proportion of the number of students in classification
(a, i) represented by values from interval 〈0, 1〉.

tac,d,i =


0 ∃j : c, d ∈ Ha

j ,
1 ∃j : c, d ∈ Ga

j ,
eac,ie

a
d,i otherwise.

We call this number the target share of a curriculum between the two courses.
For the above example with Figure 1, the target share between courses L1

and L2 is 1 (all students attending L1 are expected to attend L2 and vice
versa), it is 0 between courses I1 and I2 (students are taking either I1 or I2,
but not both), and it is 0.44 between J1 and J2 for the second year students
(44 % of students are expected to take both J1 and J2).

If there are courses in multiple groups, a special graph needs to be con-
sidered. Here the nodes are represented by courses and the edges are defined
by the existence of a (conflicting or non-conflicting) group between the two
courses. More precisely, there is an edge between c, d ∈ Ca if courses c and d
are present in the same group. The target share tac,d,i is set to zero if there is a
path c = c1, c2, . . . , cm−1, cm = d in the graph where at least one of the groups
defining edges on the path is non-conflicting. The target share tac,d,i is set to
one if the path has all the groups conflicting. Note that correct computation of
all target share values necessitates computation of the transitive closure in the
graph. For the above example with Figure 2, this means that we also expect no
students to be between course M1 and N2, between M2 and N1, and between
M2 and N2 (and similar for O1 and O2 courses).

3 Curriculum to Enrollment Model Transformation

We now show that the proposed curriculum model can be transformed into
an enrollment model. In the enrollment model, each course has a set of students
enrolled in it. Our goal is to find an assignment of students to courses in
the enrollment model such that the curricula are respected. This means that
student conflicts in the enrollment model should correspond with the number
of broken requests given by curricula. For instance, two compulsory courses
in a curriculum with 10 students timetabled at the same time corresponds to
10 student conflicts in the enrollment model.



First, consider the target share between two courses in a curriculum. We
propose relating the target share with the number of students who must be
able to attend both courses. This corresponds with the number of student
conflicts in the enrollment model. Further, particular target shares specify the
characteristics of an ideal enrollment model in which student conflicts fully
correspond with the unmet curricular course requirements in the curriculum
model. Having this in mind, we define an optimization criterion evaluating
assignments of students to courses in the enrollment model. This criterion
evaluates the affinity of this assignment to an ideal enrollment model. Gener-
ally, we can summarize distances from optimality based on a comparison of
characteristics (target shares) of the ideal enrollment model with characteris-
tics of the assignment. Certainly our goal is to find an assignment with the
minimal distance. For instance, if there are two courses with target share of
15 students in a curriculum a and our assignment has only 14 students that are
enrolled in both of these courses from a, then the contribution to the distance
corresponds to 1.

3.1 Formal Transformation

In the curriculum model, there are xai students for each classification (a, i).
We summarize characteristics of the ideal enrollment model with respect to
the curriculum model.

1. There are eac,ix
a
i students from the classification (a, i) enrolled in the course c.

2. The target share tac,d,i between courses c and d of the classification (a, i)
specifies the number of students tac,d,ix

a
i enrolled in both courses c and d.

If we expect that each student is enrolled in only one curriculum2, all
curricula are independent and do not share any students. Also, it is clear that
each student is enrolled in only one semester of the curriculum a. This means
that there are different students in the two semesters i, j of curriculum a.
This extends characteristics of the ideal enrollment model with respect to the
curriculum model.

1. There is a total of
∑

(a,i)∈AI e
a
c,ix

a
i students enrolled in the course c.

2. For each two courses c, d ∈ Ca, the total number of students enrolled in
both courses corresponds to

∑
(a,i)∈AI t

a
c,d,ix

a
i .

Next we consider an assignment θ of students to courses defining an en-
rollment model which will be evaluated with respect to the ideal enrollment
model. We also expect that each such student belongs to a curriculum a ∈ A
and its semester i and the number of students in curriculum a equals to xai for
the semester i. In the assignment θ, we denote the number of students xai in
classification (a, i) belonging to both courses c, d ∈ Ca as an actual share sac,d,i.

2 This is typical for the vast majority of students in our case. Only students wanting to
study two different topics would not satisfy this condition.



The assignment θ is evaluated by the distance

F (θ) =
∑

(a,i)∈AI

∑
c,d∈C,c 6=d

|tac,d,ixai − sac,d,i| =
∑

(a,i)∈AI

F (θ, a, i) .

Clearly an ideal assignment ω (assignment with the ideal enrollment model)
has a distance F (ω) = 0. Since such an assignment may not necessarily exist,
our goal is to find an assignment σ with the minimal distance F (σ). We also
defined F (θ, a, i) since students in each classification (a, i) are different from
students in all other classifications. Following that, the assignment of students
for each classification is independent of assignments in all other classifications
and the following statement holds.

minF (θ) =
∑

(a,i)∈AI

minF (θ, a, i) (1)

3.2 Using Historical Data

It is also possible to make adjustments to the target share matrix based on
historical data, typically from the last-like semester (e.g., last-like semester
for Spring 2012 is Spring 2011). For instance, if we know from past experience
that students attending J1 are more likely to attend J2 than J3, we can use
this information to adjust the values of the matrix to reflect this.

More formally, the target share is tac,d,i = p rac,d,i+(1−p)eac,iead,i where rac,d,i
is the percentage of students from classification (a, i) that took both courses c
and d in the last-like semester, and p a number between 0 and 1 defining how
much we want to stick with the past. Note that this new target share only
applies to pairs of courses for which we have historical data. In other words, if
either course c or d is newly offered, the target share is only defined by eac,ie

a
d,i

matrices and the groups in the previous chapter.
Given this, we can take assignment θ of students in the last-like semester,

compute its distance F (θ) and consider it as an initial assignment when looking
for an (sub-)optimal solution to the timetabling problem using the curriculum
model.

4 Construction of Enrollments

We specified how students should be assigned to courses to respect the cur-
riculum model by minimization of the distance F (θ). In this section, we de-
scribe a local search algorithm which allows computation of a “reasonable”
sub-optimal assignment θ of students to courses with respect to F (θ). As dis-
cussed in the second paragraph of Section 3.2 and demonstrated in Equation 1,
we expect different students for each classification (a, i). This means that the
assignment θ can be computed per partes, i.e., the local search algorithm is
applied to each classification separately.



First, it is important to discuss computation of the target share between
two courses c, d ∈ Ca. We will concentrate on computation of the number
of students t

a
c,d,i that are expected to be assigned to both courses c and d.

Corresponding to Section 2.1, this is counted based on tac,d,ix
a
i . However, it is

also bounded by the number of students in courses c and d, respectively. To
account for this, the number of students in the course c for classification (a, i) is
denoted xac,i = round(eac,ix

a
i ). For instance, if there are 20 students in the given

semester of a curriculum, and courses c and d are expected to be attended by
10 and 15 students respectively, the share of the two courses must be between
5 and 10.

t
a
c,d,i =


max(0, xac,i + xad,i − xai ) ∃j : c, d ∈ Ha

j ,

min(xac,i, x
a
d,i) ∃j : c, d ∈ Ga

j ,

max
(

min
(

round(eac,ie
a
d,ix

a
i ), xac,i, x

a
d,i

)
, xac,i + xad,i − xai

)
otherwise.

The overall distance F (θ, a, i) for classification (a, i) is counted incremen-
tally for each course as the difference ∆F (θ, a, i, c, znew,⊥) between the dis-
tance before and after assignment of a student znew into a course c. It also
allows for a swap of a course between two students znew and zold (denoted by
∆F (θ, a, i, c, znew, zold)). Pseudo-code of this function is presented in Figure 4.

1: function ∆F (θ, a, i, c, znew, zold)
2: f = 0
3: for d ∈ Ca such that d 6= c

(for each course other than c, f is increased by the difference
between target share and actual share before and after the change)

4: t := t
a
c,d,i

5: s := sac,d,i
6: f := f − |t− s|
7: if znew ∈ students(d) then s := s+ 1
8: if (zold 6=⊥ and zold ∈ students(d)) then s := s− 1
9: f := f + |t− s|

10: return f

Fig. 4 Pseudo-code of function ∆F (θ, a, i, c, znew, zold).

The search for assignment of students to courses for the given classifica-
tion (a, i) is processed in two phases as can be seen in Figure 5. In the first
phase (lines 3-7) a simple construction heuristic is used. In each iteration,
a single student is assigned to a particular course until each course has the
desired number of students. Courses are ordered dynamically by the number
of remaining spaces (if there are two or more courses with the same number of
remaining spaces, one is selected randomly — see line 4). For a selected course,
all students that are not yet assigned to it are checked, and one of the students
that has the best impact on the overall distance is selected randomly (line 5).

In the second phase (lines 8-18) a great deluge approach (Dueck, 1993) is
used. The initial bound UB is set to 1.25 of the initial solution’s distance f



1: procedure search(a, i, α)
2: f := 0

(construction phase)
3: while ∃u ∈ Ca such that ‖students(u)‖ < xac,i
4: c := random(d ∈ Ca such that maximal(xad,i − ‖students(d)‖))
5: z := random(v 6∈ students(c) such that minimal(∆F (θ, a, i, c, v,⊥))
6: f := f +∆F (θ, a, i, c, z,⊥)
7: students(c) := students(c) ∪ {z}

(great deluge phase)
8: UB = 1.25 ∗ f (upper bound)
9: while (UB ≥ 0.75 ∗ f and f > 0)

10: c := random(d ∈ Ca such that ‖students(d)‖ < xad,i and xad,i > 0)

11: zold := random(v ∈ students(c))
12: znew := random(v 6∈ students(c))
13: ∆f := ∆F (θ, a, i, c, znew, zold)
14: if (∆f ≤ 0 or f +∆f ≤ UB) then
15: f := f +∆f
16: students(c) := students(c)\{zold}
17: students(c) := students(c) ∪ {znew}
18: UB := UB ∗ (1− α)

Fig. 5 Pseudo-code of the algorithm computing enrollments for classification (a, i).

(line 8) and it is decreased by the coefficient α (typically 0.0001 %) in each
iteration (line 18). The search is stopped when a solution with zero distance is
found or when the bound reaches 0.75 of the solution’s distance (line 9). In each
iteration, a possible change of a single student in a course is generated (lines 10-
12) and accepted if the resultant solution’s distance does not exceed the bound
(lines 14-17). Changes that do not increase the distance are also accepted.
A course, a student that is removed from this course and a student that is
assigned to this course are selected randomly (lines 10, 11, 12, respectively).

When an assignment θ with zero distance F (θ, a, i) is found during the first
phase, the second phase is not executed. When historical data are available
and we want to take them into account, the first phase starts with last-like
semester enrollments (see Section 3.2).

5 Experimental Results

The following experiments are based on Fall 2011 and Spring 2012 data from
the Faculty of Education at Masaryk University. Fall 2011 is the first semester
for which UniTime was used to build the course timetable for the college.
Experiments in Section 5.1 were computed on an Apple MacBook Pro with
a 3.06 GHz Intel Core 2 Duo processor and 8 GB RAM, running Mac OS X
10.7.3 and Java 1.6.0. Results in Section 5.2 are presented from the installation
for the Faculty of Education and the Faculty of Arts (Rudová and Müller,
2011) running on a virtual machine hosted on a machine with two Intel X5560
processors and 96 GB RAM (8 GB dedicated to the UniTime virtual machine).



5.1 Curriculum to Enrollment Transformation

Table 1 shows results from the curriculum to enrollment solver. All of the cur-
ricula are split into three groups based on the student’s form of study. Results
are presented for all curricula together as well as for particular sets. For each
set, the number of curricula, classifications and students is specified. We also
present the number of students per classification and the number of courses
per classification. For these data sets, the average distance F (θ, a, i), the aver-
age distance achieved after the construction phase of the search algorithm (see
Figure 5), and the average computational time is presented for 10 independent
runs.

We can see that curricula of the present form of study introduce the largest
data set with the highest computed distance. Curricula of the combined form
of study can be transformed into a better enrollment model (the distance
is lower) and it takes a longer time. Curricula of the lifelong form of study
introduce the smallest data set and are easiest to transform. To understand
the achieved quality of the solution we note that the distances 7.05 and 6.66
for the present form of study correspond to 0.60 % and 0.69 % of the worst
possible distance, respectively.

Certainly we tried to find the best possible distance F (θ, a, i) in a reason-
able time. We ran the set of experiments with varying size of α (see line 18 of
Figure 5 and description of the algorithm) influencing progress of the search

Fall 2011 All together Present (P) Combined (K) Lifelong (C)

Spring 2012

Curricula 265 210 28 27

258 202 25 31

Classifications 574 470 56 56

543 442 53 48

Students 7,569 4,301 2,562 706

6,803 3,852 2,362 589

Students 13.19 9.15 45.75 14.71

per classif. 12.53 8.71 44.57 12.27

Courses 30.61 34.63 18.32 5.67

per classif. 27.44 31.06 15.62 7.21

F (θ, a, i) 7.05± 0.01 8.24± 0.01 3.14± 0.03 0.00± 0.00

6.66± 0.01 8.04± 0.01 1.02± 0.03 0.13± 0.00

F (θ, a, i) 11.97± 0.13 13.25± 0.13 11.53± 0.14 0.04± 0.06

after 1. phase 10.87± 0.11 11.99± 0.12 11.03± 0.12 0.31± 0.06

CPU time [s] 3.36± 0.06 3.08± 0.05 8.58± 0.12 0.01± 0.00

3.53± 0.07 2.88± 0.06 12.14± 0.16 0.02± 0.03

Table 1 Computing enrollments for two semesters.



algorithm. The smaller α is the slower the upper bound decreases and the
great deluge algorithm has more time for optimization. Results of this exper-
iment are available in Figure 6. Here we can see that the algorithm is able to
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Fig. 6 Graph depicting dependency of the distance F (θ, a, i) and the computational time
on the value α = 10−x for the problem with all curricula and semester Spring 2012.

improve the distance with a reasonable demands on computational time up
to the value α = 0.0001 % (corresponding to x = 6 in the graph). Decreasing
this value further does not achieve significant improvements in the distance in
a reasonable computational time.

5.2 Course Timetabling

Table 2 contains results from the course timetabling (courses from the present
form of study only) at the Faculty of Education. For each semester, there
are results from the automated solver as well as the published solution, after
a few interactive changes were made. Note that published solutions were used
in practice. The table shows the overall number of courses and the number
of compulsory and elective courses (in parenthesis). Similarly, the number of
classes and the number of student enrollments in each problem are presented.
The second part of the table presents the main characteristics of the computed
solution. The most important factor of the problem was the number of student
conflicts among compulsory and elective courses. As we can see, we have only
112 and 96 conflicts for 1,575 and 1,408 timetabled classes, respectively. This is
certainly a very strong result given all of the complexities and the size of both
problems (recall from Table 1 that we have 210 and 202 curricula for 4,301
and 3,852 students, respectively). The number of student conflicts among all
courses is slightly higher, it is mostly due to overlaps between optional and
compulsory or elective courses. These numbers, together with results for time,
room, and distribution preferences, correspond with priorities of the school and
the importance of particular criteria. The better results for Spring semester
were achieved due to a smaller number of classes timetabled into the same



Fall 2011 Fall 2011 Spring 2012 Spring 2012

automated published automated published

Courses (comp. & elect.) 1,225 (1,156) 900 (870)

Classes (comp. & elect.) 1,831 (1,575) 1,665 (1,408)

Enrollments (comp. & elect.) 57,861 (52,396) 45,786 (45,400)

Student conflicts 418 (0.63 %) 456 (0.69 %) 477 (1.02 %) 417 (0.89 %)

among comp. & elect. 112 (0.17 %) 140 (0.21 %) 96 (0.20 %) 93 (0.20 %)

Time preferences 89.27 % 89.93 % 94.88 % 95.32 %

Room preferences 78.03 % 79.92 % 85.15 % 86.50 %

Distribution preferences 84.50 % 80.41 % 90.49 % 90.49 %

Interactive changes 355 275

of time 183 105

of room 300 218

Table 2 Results from timetabling at the Faculty of Education for two semesters.

amount of available classrooms. Finally, the number of interactive changes
with the initial solution is demonstrated. These low numbers show that it is
not necessary to adjust solutions much. Still, it is important to allow some
adjustments to the solutions to make them more acceptable for the school.

6 Conclusion

We presented a new approach to curriculum-based timetabling and applied it
to solve large-scale problems at the Faculty of Education where it is imple-
mented in the UniTime system and used for timetabling since Fall 2011. Auto-
mated timetabling simplified the process for the college where about 40 sched-
ule deputies cooperated on creating timetables manually until Spring 2011.
Presently, they provide only inputs, such as desirable assignments of times and
rooms to classes, and the timetables are constructed by UniTime. It is also
important to mention the existence of Information System3 at Masaryk Uni-
versity where curriculum data are maintained and can be used for timetabling
directly. Resultant timetables are also available here4.

Further generalization of the approach involves inclusion of students in
more than one curriculum. This is fully compatible with the proposed search
algorithm where students can be used in different curricula and additional
courses will be generated for them from each curriculum. However, this ap-
proach is not yet implemented. Also, some reformulation of the curriculum
model related to the proposed distance function is necessary. Our intent to
include this functionality lies in easier management of existing curricula. Hav-
ing many curricula composed of two different majors (examples are Math and

3 http://is.muni.cz
4 http://is.muni.cz/rozvrh/?fakulta=1441&lang=en

http://is.muni.cz
http://is.muni.cz/rozvrh/?fakulta=1441&lang=en


Physics or Physics and Chemistry as discussed before), it would be easier to
maintain the smaller set of majors and an additional set of acceptable combi-
nations of majors defining curricula.
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