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1 Introduction

Timetabling problems are often solved based upon what is assumed to be complete in-

formation about the problem. However, users may later desire modifications to the gen-

erated timetable to adapt to changing requirements or increase their personal satisfac-

tion with the solution [1,5,3]. Methods that allow corrections to an existing timetable

while leaving most of the solution intact are necessary. Furthermore, the ability to

make interactive changes to a timetable introduces a desirable approach by allowing

users to readily react to a limited set of altered requirements by choosing among ap-

propriate options. The aim of this paper is to introduce such methods of interactive

timetabling as they have been applied at Purdue University. The concept of using in-

teractive timetabling in this problem has been described previously [4], however, this

work introduces a new formal view of this approach.

2 Applied Approach

Interactive changes to a timetable are easily understood by users as a sequence of

changes to individual classes, Figure 1 illustrates the information available to a user

considering changes to a class of interest (later denoted vbb). The user may explore

different options, consider various types of changes with the class, commit selected

choices, or discard all changes considered. Selected Assignments describe changes al-

ready made to the timetable during the current interaction (denoted µ). Conflicting

Assignments inform the user of any conflicts created in the timetable (denoted γ) as a

result of the selected assignments. Suggestions (denoted Ω) are proposed options the

user may choose from to make the timetable feasible.
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Faculty of Informatics, Masaryk University
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Fig. 1 Interactive solver interface for MA 52700 after selection of a new time assignment.

Figure 2 provides a more formal description of the interaction process leading to

a desired solution. It is assumed that a solution δ of the timetabling problem P was

generated by a standard timetabling solver such as that discussed by Murray et al. [4].

These become inputs for interactions with a user who may wish to explore changing the

assignment of a class vbb. The interactive solver BB generates a set of suggestions Ω

along with conflicting assignments γ resulting from changes in vbb and from any earlier

selected assignments µ. Each suggestion ω ∈ Ω represents a set of assignments resolving

conflicts in γ.

The user has many possible responses, represented by the status variable S. When

the user is satisfied with one of the suggestions ω, (s)he may commit the solution and

the interactive process terminates. Any previously selected assignments µ are projected

along with the new suggestions ω into δ. Alternatively, the user may suggest a specific

assignment vbb/d with the help of selectAssignment(d) to explore consequences of this



assignment by addition of vbb/d to selected assignments µ. There is also a choice

selectClass(c) to consider changes to a different class c, which becomes the new vbb

variable for future cycles. Note that the user can choose class c either from γ∪µ or from

Ω since these are available through the GUI. Another possibility, removeClass(c) allows

deletion of a class c from µ and continuing with the reduced set of previously selected

assignments. Finally, the user may decide to abort the interaction without applying any

of the changes in µ to the original solution. If needed, (s)he can continue the interaction

process by starting another interaction, e.g., selecting a different variable vbb.

procedure interaction(P, δ, vbb)
µ = ∅
while true do

(Ω, γ) = BB(P, δ, µ, vbb)
S = communication(P, δ, µ, vbb, γ, Ω)
case (S) commit(ω): δ = join(δ, µ ∪ ω); µ = ∅; return

selectAssignment(d): µ = µ ∪ {vbb/d}
selectClass(c): vbb = c (only c ∈ γ ∪ µ or c from Ω are available)
removeClass(c): µ = µ\{c/dc}
abort: return

end case
end while

end procedure

Fig. 2 Cycle of interactive solving.

The timetabling problem P can be described as a constraint optimization prob-

lem [2] with domain variables, their domains, and constraints restricting the values of

variables (V,D, Ch ∪Cs). A solution δ is a complete assignment of variables satisfying

all hard constraints Ch. The quality of a solution is evaluated based on violations of soft

constraints Cs, e.g., with the help of weighted constraints expressing their importance.

Interactive timetabling can also work with a partial consistent assignment ρ (satisfying

constraints having all variables assigned) and extend it by selecting assignments for

additional variables. When a user asks the solver BB for a solution to the problem for

the variable vbb and required assignments µ, the hard constraints Ch must be extended

by the constraint vbb 6= do (if vbb/do is present in ρ) and vbb = d (if required), and by

the constraints v1 = d1, . . . vk = dk for µ = {v1/d1, . . . , vk/dk}.
The constraint optimization problem becomes an input for the interactive solver

(function BB at Figure 2). The solver is based on the branch and bound algorithm [2]

with some extensions. Most importantly, the depth of the search is limited to allow

changes to only a small number of variables (typically two or three), since the goal

is only to create a new assignment for the variable vbb. This limit may be extended

and a subsequent call of BB invoked if needed. Second, a limited number n of best

suggestions Ω is given to the user (note that the optimization criterion is computed

through violations of weighted constraints and the best suggestions have the lowest

value of weighted violations). As soon as the solution quality within current branch is

worse than the quality of n-th found suggestion, its exploration is interrupted. Proper

ordering of values for the assigned variables is necessary as is common for many other

search algorithms. Each value is evaluated by its contribution to the value of the

objective function and the best value is always selected. Finally, the search has a limit

on the time (typically 5 seconds) in which to output a solution.



3 Experiments

To demonstrate the functionality of the branch and bound solver, it was applied on

the largest problems at Purdue University, pu-fal07-llr and pu-spr07-llr. Characteristics

of both problems, along with data sets and solutions, may be found at http://www.

unitime.org, where the university timetabling application including an online demo

is also available. Input solutions represent timetables used for the Fall and Spring

semesters in 2007. Importantly, these timetables were generated by human schedulers

using an automated solver [4] along with the interactive timetabling methods described

here.

Suggestions were generated by the branch and bound solver for each class that was

not fixed in time and room by a hard constraint. Changes to the assignments of up

to two additional classes were allowed. Results in Table 1 are compared for runs with

a time limit of 5 seconds (third and fifth columns) and runs without any time limit

(second and fourth columns). The average time spent by the interactive solver roughly

corresponds to the number of backtracks made. With the time limit, the solver was

able to compute optimal solutions in more than half of the cases, with the quality of

the solutions in the remaining cases being very good. Note that it was possible for

the branch and bound solver to improve on the quality of input timetables since the

solutions included manual changes by users having additional personal priorities.

Table 1 Results for the interactive solver.

Problem pu-fal07-llr pu-spr07-llr

Classes 891 803

Classes fixed in time & room (%) 31.0 33.8

Time limit (s) – 5 – 5

Optimal suggestion found (%) 98.4 51.5 99.2 67.0

Number of backtracks 66367.9 2886.9 13949.1 2592

Time spent (s) 128.6 4.7 39.9 4.2

Improvements in objective function (%) +1.1 +0.8 +0.9 +0.7

4 Conclusions

A formal description of the approach applied to solving interactive timetabling prob-

lems at Purdue University has been presented. This technique was found to be a neces-

sity by schedule managers who needed to make adjustments to automatically generated

timetables as a result of changed requirements or to accommodate their own prefer-

ences. This allows creation of timetables that are ultimately used by the university.
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