
Multi-Criteria Soft Constraints in Timetabling

Hana Rudová, Miroslav Vlk

Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00, Czech Republic

{hanka,xvlk@fi.muni.cz}

1 Introduction

Timetabling problem is an optimization problem where various criteria must be considered and where it is
not possible to satisfy all of the requirements. We would like to show a framework which allows to include
more criteria in a declarative style with the help of soft constraints. Each objective criteria can be represented
by a set of soft constraints. Such set includes requirements of the same type, for example preferences on
assignments of events to times or preferences on possible overlapping of events in time. This set can be
associated with a weight representing importance of the criteria. The flexible assignment of the weight allows
to emphasize or suppress particular criteria and obtain desirable solution.

Our work is motivated by a real timetabling problem at Purdue University, USA [7]. This large scale
problem includes about 820 classes. About 90,000 course requests by almost 30,000 students must be consid-
ered. A major objective in developing an automated system is to minimize the number of potential student
course conflicts. There are also various requirements which are not possible to satisfy and some optimization
is needed. For example, back-to-back classes of one student or instructor should not be scheduled in two
distant buildings, or we should allow for a balanced distribution of times for particular subjects.

Let us start with some basic definitions of constraint programming approach. A constraint satisfaction
problem (CSP) [2] is a triple (V,D,C) where V is a finite set of variables, D is a set of possible values for
variables (domain), and C is a finite set of constraints restricting the values of variables. A solution to a CSP
is a complete assignment of the variables that satisfies all the constraints. It may not be possible to find a
solution which would satisfy all of the (hard) constraints. In this case, we can consider soft constraints which
may not be necessarily satisfied. Various approaches to soft constraints have been introduced and studied [1].
We will consider the weighted constraints [3] which are associated with some cost. The goal is to find such
assignment of values to variables that the total cost of unsatisfied constraints is minimal. This approach
includes optimization component but the multi-criteria decision making is not considered. Our goal is to
show an extention of weighted soft constraints which is able to handle multiple criteria naturally.

We will first describe particular criteria and define their evaluation function. Next section will propose
evaluation function for all criteria with the help of inconsistency counters. Section 4 specifies particular soft
constraints and their propagation algorithms based on inconsistency counters. Some preliminary experiments
are presented in Section 5.

2 Criteria

We can define unary soft constraints expressing importance of particular values in the domain of variable.
In timetabling problem, two distinct criteria can be represented with the help of such soft constraints. The
first criteria introduces a desirable time placement and the second criteria specifies a desirable classroom
placement for classes. Both criteria are defined on each assignment θ of values to variables and they sum up
initial time preferences time(ti, θ(ti)) and initial room preferences room(ri, θ(ri)) for all classes i:

ftime(θ) =
∑
∀i

time(ti, θ(ti)) , froom(θ) =
∑
∀i

room(ri, θ(ri)) .



Other soft constraint can state that the two classes i and j represented by variables for start times share
the cij students. Naturally the cij gives the cost of this constraint because cij students do not want scheduling
of these classes at the same time. All soft constraints of this type are included in the student conflict criteria.
To define it, we will expect that overlap(θ(ti), θ(tj)) = 1 holds if i and j overlap in the assignment θ and
overlap(θ(ti).Otherwiseθ(tj)) = 0 holds. Now the student conflict criteria can be written as

fsc(θ) =
∑

∀i,j:i<j

cij × overlap(θ(ti), θ(tj))

A similar constraint with additional variables for classrooms can express the student distance criteria. It
means that the scheduling of the two classes i, j in consequent time periods (back-to-back classes) should
discourage placement in very distant buildings because the cij students share these classes. We again need
an additional function btb(θ(ti), θ(tj)) which is equal either to 1 for back-to-back classes or to 0 for remaining
classes. Function far(θ(ri), θ(rj)) expresses how distant are two rooms i, j. For student conflicts, it corre-
sponds to 0 if they are close enough end equals to 1 if they are too distant1. Now the student distance criteria
is

fbtb(θ) =
∑

∀i,j:i<j

cij × btb(θ(ti), θ(tj))× far(θ(ri), θ(rj)) .

In our timetabling problem, classes of different subjects/departments like Math or Physics are included.
A balanced distribution of times for particular departments is needed not to assign to one subject much worse
or better times than to others (for example, one subject should not have all late afternoon lectures). The
department spread criteria

fdept(θ) =
∑
∀D

lst∑
k=est

max(0, current(θ, D, k)− limit(D)) .

is associated with the soft constraints which mean that at most limit(D) classes of one department D can
be scheduled at the same time. Function current(θ, D, k) computes the number of classes scheduled by θ at
each time unit of a day k from est to lst.

3 Inconsistency Counters

We have defined several criteria which needs to be extended to some soft constraints [1]. Now we would like to
reformulate particular criteria to allow inclusion in constraint propagation algorithms for soft constraints [4].
Our current proposal is based on partial forward checking algorithm [3] which is the basic algorithm applying
so called inconsistency counts. Inconsistency counters store information about the current number of vio-
lations for each value in the actual domain of the variable. Once all variables are assigned, only one value
remains in the domain of each variable. Summarization of all remaining inconsistency counters (one per each
variable) gives evaluation of the solution. In this section, we redefine all of the criteria using inconsistency
counters. Consequently they can be used in constraint propagation algorithms of particular soft constraints.

Initially the value of inconsistency counter for time variable tj and each its value a is set to time(tj , a).
Similarly we initialize inconsistency counters for each room variable by room(rj , b).

Let θ is some current partial assignment and A(θ) is the set of variables assigned by θ. V � v will denote
that the variables from the set V were assigned earlier than the variable v.

Now the number of inconsistencies for the student conflict criteria can be written as

ICsc(tj , a) =
∑

ti∈A(θ):{ti}�tj

cij × overlap(θ(ti), a) .

The student distance criteria can propagate into inconsistency counter if only one of the variables ti, ri,
tj , rj remains unassigned. Let us expect we have assigned ti, ri, rj . Then we can derive

ICbtb(tj , a) =
∑

{ti,ri,rj}�tj

cij × btb(θ(ti), a)× far(θ(ri), θ(rj)) .

1Let us note that the function far could express various degrees of acceptability.



If one of the room variables (rj) is unassigned we have

ICbtb(rj , a) =
∑

{ti,tj ,ri}�rj

cij × btb(θ(ti), θ(tj))× far(θ(ri), a),

Now let us define inconsistency counters for the department spread criteria. Let periods(i, b) gives all
time periods of the class i starting at time period b. The current number of classes j from the department
D which were assigned before the class i using θ to time period a, is

current(θ, D, a, i) = ‖{j|j ∈ D ∧ {tj} � ti ∧ a ∈ periods(j, θ(tj))}‖ .

The limit value limit(D) for each department D can be compared with the maximal value of current(θ, D, a, j)
for all time periods of course j starting at a

max_current(j, a) = max
b∈periods(j,a)

{current(θ, D, b, j)}

where j ∈ D holds. As a consequence we get

ICdept(tj , a) =
{

0 max_current(j, a) < limit(D)
1 max_current(j, a) = limit(D)

Unique inconsistency counter was defined for each variable and its value. Inconsistency counter for the
time variable tj and its value a equals to

IC(tj , a) = wtimetime(tj , a) + wscICsc(tj , a) + wbtbICbtb(tj , a) + wdeptICdept(tj , a)

and, for the room variable rj and its value b, it corresponds to

IC(rj , b) = wroomroom(rj , b) + wbtbICbtb(rj , b)

Finally we obtain evaluation for each assignment θ

F (θ) =
∑

∀j where θ(tj)=a∧θ(rj)=b

IC(tj , a) + IC(rj , b)

4 Soft Constraints

We have implemented all of the criteria as the soft constraints of soft CLP(FD) solver [6]. This solver allows
to maintain inconsistency counters for each time and room variable. Inconsistency counter is stored for each
value which is in the current domain of the variable. It is initialized by the values of time placement and
room placement criteria.

Student conflict criteria is implemented with the help of

soft_disjunctives(T_i, D_i, ListT_j, ListD_j, ListC_ij)

constraint posted for each class i. The class i is represented by the time variable T_i and its duration D_i.
The lists ListT_j and ListD_j store time variables and durations for classes j which share some students
with the class i. The list ListC_ij contains the list of numbers of shared students C_ij between class i
and classes j. The solver for this constraint is activated once when the T_i is assigned a value. It increases
inconsistency counters for time variables T_j from ListT_j which still have not assigned value and which
could overlap with T_i. So, the values of T_j overlapping with T_i are computed and their inconsistency
counters are increased by wsc×C_ij.

The soft constraint for student distance criteria has a similar structure to soft_disjunctive constraint

soft_btb_dist(T_i, R_i, D_i, ListT_j, ListR_j, ListD_j, ListC_ij)



Meaning of the variables remains to be same. In addition, we have corresponding room variables R_i and
ListR_j. This soft constraint is activated two times. When the first of the variables T_i and R_i is
instantiated we are looking for classes j which have assigned both T_j and R_j. When the second of
the variables T_i and R_i is instantiated, the classes j with just one assigned variables from T_j and R_j
are found. In all cases, we have three variables assigned and we can check for an increase one of the ICbtb

counters.
Department spread criteria is implemented via

soft_dept(Dept, ListT_i, ListD_i, Limit)

constraint posted for each department Dept. The lists ListT_i and ListD_i contains time variables and
durations of all classes from the department Dept and Limit is the limit value for the Dept. The constraint
is activated any time some time variable T_i from ListT_i is instantiated. As a consequence, the current
number of classes assigned during time periods of T_i is increased. Also inconsistency counters are increased
for classes j from ListT_i which have assigned just Limit classes for some value. However, this increase
could be processed for each value of each time variable just once.

5 Experiments

Let us present some of our preliminary experiments we achieved on Purdue Spring 2005 data set. This data
set includes 821 classes and 50 classrooms. The total amount of joint enrollments is 97371.

The goal of our experiments was to set different weights to particular criteria and look for comparison
among them. Both experiments at Figure 1 show evaluation for achieved time placement and student conflicts
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Figure 1: Comparison of criteria on time variables

(satisfied student enrollments corresponds to the supplement of student conflicts). Both criteria have set
different weights wtime : wsc ranging from 4 : 1 to 1 : 4. For example, 4 : 1 means that the time placement
criteria was four times more important than the student conflict criteria. The first experiment at Figure 1
(left graph) shows the case where the weights for the student distance and department spread criteria are set
to 1 (i.e., wbtb = wdept = 1). The other experiment does not consider any of them (i.e., wbtb = wdept = 0).

We can see that all criteria are strongly tight together. We are able to improve evaluation for time
placement while worsening the number of student conflict and vice versa. Also we can see that the department
spread criteria has a strong influence on the time placement. The department spread criteria is able to over-
weight some of the time placement preferences to achieve a better spread of classes of each department
through the time.



6 Conclusion and Future Work

We have extended our soft CLP(FD) solver to handle various criteria from timetabling problems. This
general proposal is based on inconsistency counters. It allows addition of other criteria by means of new
types of soft constraints. We run some preliminary experiments on large scale Purdue timetabling problem.
Our goal was to show that multi-criteria decision making could be implemented with the help of our soft
constraints.

Our future work will consists in extension of constraint propagation algorithms for particular criteria. Next
we will compare our results with local search-based solver for Purdue University timetabling problem [5].
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