University course timetabling and
International Timetabling Competition 2019

Tomas Miiller - Hana Rudova -
Zuzana Millerova

Abstract University course timetabling belongs to classical problems which
have been studied for many years by many researchers. This paper will outline
existing research and emphasize new research directions and challenges in this
area. It is clear that the organization of international competitions has a high
impact on the timetabling research. We intend to discuss the organization of
the new International Timetabling Competition (ITC2019) with the aim to
motivate further research on complex university course timetabling problems
coming from practice. Our goal is the creation of rich real-world data sets.
Thanks to the UniTime timetabling system, we can collect a strong set of
data with diverse characteristics which we will discuss in the paper. The key
novelty lies in the combination of student sectioning together with standard
time and room assignment of events in courses. To make the problems more
attractive, we remove some of the less important aspects of the real-life data
while retaining the computational complexity of the problems.

Keywords University course timetabling - Competition - Real-world
problems

T. Miiller

Purdue University

West Lafayette, Indiana, USA
E-mail: muller@unitime.org

H. Rudova

Faculty of Informatics, Masaryk University
Brno, Czech Republic

E-mail: hanka@fi.muni.cz

Z. Miillerova

UniTime, s.r.o.

Zlin, Czech Republic

E-mail: mullerova@unitime.cz



2 T. Miiller, H. Rudové, Z.Miillerova

1 Introduction

Educational timetabling problems have been widely studied for many years [28]
30]. As the research evolved, a conference series on the Practice and Theory of
Automated Timetabling (PATAT) started in 1995 for the international com-
munity working on all aspects of computer-aided timetable generation [2]. As
years went by, various surveys were published concentrating on different as-
pects of timetabling. Schaerf [27] presented problems of school timetabling,
university course timetabling and examination timetabling. In [6], Burke and
Petrovic discussed many approaches to timetabling problems developed in
the Automated scheduling, optimization, and planning research group at the
University of Nottingham. Further surveys often concentrated on specific ar-
eas such as metaheuristic-based techniques [12], school timetabling [20] or
curriculum-based timetabling [3], a more recent general study on educational
timetabling was given by Kingston in [I1].

Starting in 2002, the research in timetabling has been highly influenced
by the organization of international competitions. The European Metaheuris-
tics Network prepared the first International Timetabling Competition (ITC
2002) [19] which focused on a simplified version of the university course time-
tabling problem. The next ITC 2007 competition [I5] was able to introduce
three tracks on curriculum-based timetabling [94], post-enrollment timetab-
ling [13], and examination timetabling [I4]. It is interesting to see that results
for curriculum-based timetabling are still maintained at the website [5] where
various data sets were added until 2014, and new results are still updated.
Thanks to this strong support of curriculum-based timetabling, many stud-
ies focused on this problem as demonstrated in [3]. Research in another area
of educational timetabling was encouraged by the ITC 2011 competition [23]
where high-school timetabling problems were solved. Again the website is still
maintained [21], and a rich body of research has been initiated. An XML for-
mat for benchmarks has been proposed [22], an archive is maintained [24] and
various groups have started to work on this problem [20].

Three other competitions are listed on the PATAT web pages [2]. The com-
petition organized in 2010 [I0] was oriented on nurse rostering problems with
the similar goals as the previous educational timetabling competitions. The
competition wanted to generate new approaches by attracting researchers from
different areas of research, reduce the gap between research and practice and
stimulate debate within the research community. This competition introduced
an interesting proposal on how to handle different solving times for instances
of various size and complexity. It considered three tracks: the sprint track re-
quired interactive use, the middle distance track allowed a few minutes, and
the long distance track simulated overnight solving. The second International
Nurse Rostering Competition (INRC-II) [8] emphasized another important
feature of nurse rostering problems: the multi-stage problem formulation re-
ferring to consecutive weeks of a longer planning horizon taking 4 or 8 weeks.
The last competition currently published at the PATAT web pages [2] is the
first Cross-domain Heuristic Search Challenge (CHeSC 2011) [7] which aimed



University course timetabling and ITC 2019 3

to measure performance over several problem domains rather than just one.
HyFlex [18] software framework was proposed to deal with different combina-
torial optimization problems. The challenge was to design a search algorithm
that works well across different problem domains.

We will organize a new competition focusing on the university course time-
tabling. Following the tradition of previous timetabling competitions, it will be
called the International Timetabling Competition 2019 (ITC2019). Informa-
tion about it will be available through the website http://www.itc2019.org.
Our goal is the creation of rich real-world data sets which would encourage
new research directions in the theory and practice of automated timetabling.
The competition is supported by the PATAT conference and by the EURO
working group on Automated Timetabling (EWG PATAT) [1]. The PATAT
will provide one free registration to the PATAT 2020 conference for the win-
ner and 50 % and 25 % discount of the conference fee for the 2nd and 3rd
place, respectively. The EWG PATAT will provide 500 EUR for the winner.
We will also organize a track allocated for the competition at the PATAT 2020
conference.

The next section provides a general specification of the timetabling prob-
lems that we intend to work with in the competition. Section |3| states the
problem precisely and proposes an XML format of the data sets. Further, we
will specify distinct features of our problems in Section [£.I]and necessary trans-
formations of real-life data in Section Organization of the competition is
described in Section [5| and final comments are given at the end.

2 Our timetabling problems

Our educational timetabling problems are closely related to the post-enrollment
and curriculum-based timetabling problems introduced in the ITC 2007. We
focus on university course timetabling in which the aim is to find an optimal
assignment of times, rooms, and students to events related to the set of courses.
As it is common, various hard (or required) constraints ensure the feasibility
of the timetable and soft constraints define optimization criteria and the qual-
ity of the timetable. Roots of our new competition are related to the ITC
solver [I6] which was the winner of the two tracks in ITC 2007 and a finalist
in the last track. The solver was initially developed to solve course timetab-
ling problems at Purdue University [26]. It has been applied there to handle
timetabling as a single university-wide timetabling problem [25]. Based on
that, the comprehensive timetabling system UniTime [29] has been developed
as an open source project and implemented at many universities worldwide.
Thanks to UniTime, we have access to many diverse timetabling problems
from various countries. We already have an agreement with ten institutions
including Purdue University in the USA, Masaryk University in the Czech
Republic, AGH University of Science and Technology in Poland and Istanbul
Kiiltiir University in Turkey that we can use their data. We intend to have
problems with different characteristics, some of which were already described


http://www.itc2019.org

4 T. Miiller, H. Rudové, Z.Miillerova

in our earlier works published about the timetabling at Purdue University [25]
and Masaryk University [I7]. Further distinct features are described in Sec-
tion (411

All data will be anonymized. All data sets will be available in the XML
format which is described along with the considered timetabling problem in
Section 3] A sample XML file is also provided in the Appendix.

Important parts of the preparation work are the selection and transforma-
tion of the problem characteristics which will be included in the competition.
The real-life problem formulations are too complicated to be of interest for a
wider timetabling community. To make the problems more attractive, we plan
to remove some of the less important aspects of the real-life data while retain-
ing the computational complexity of the problems. The key transformations
and changes are given in Section

3 Problem description

In this section, we describe particular components of the problem as they are
defined in the XML format. A sample XML is available in Appendix. The
problem consists of rooms, classes with their course structure, distribution
constraints, and students with their course demands. The aim is to place classes
in the available times and rooms as well as to section students into classes based
on the courses they request, respecting various constraints and preferences.

Optimization needs a specification of costs, weights or preferences. In the
presented problem, all costs are specified as non-negative integer penalties. A
smaller penalty (meaning a smaller violation) is considered better. The zero
penalty represents complete satisfaction. Penalties of particular components
are summarized. The best possible solution could have zero penalty, but such
a solution does not typically exist. Later on, we will discuss that summarized
penalties for different criteria (time, room, ...) are weighted to introduce their
proper normalization.

For example, each class has a list of available time and room assignments
given in the specified problem, each with a penalty. This means, for exam-
ple, that only rooms that are big enough for the class and that meet all the
other requirements (room type, equipment, building, etc.) are listed. Similarly,
all the preferences have been already combined into a single penalty that is
incurred when the time or room is assigned (see also details about problem
transformations in Section .

3.1 Times

Each problem has a certain number of weeks nrWeeks, a number of days
nrDays in each week, and a number of time slots per day slotsPerDay. These
parameters, together with the instance name are defined on the root element
of the XML file as shown in Figure [T}



University course timetabling and ITC 2019 5

<?xml version="1.0" encoding="UTF-8"7>
<problem name="unique-instance-name" nrDays="7" nrWeeks="13" slotsPerDay="288">
<optimization ... />
<rooms> ... </rooms>
<courses> ... </courses>
<distributions> ... </distributions>
<students> ... </students>
</problem>

Fig. 1 XML specification of the problem

The example in Figure [I] specifies that the semester has 13 weeks and
7 days a week, e.g., from Monday to Sunday. While the data format allows for
variations, in all the competition instances one time slot takes 5 minutes, which
allows us to model travel times as well as classes that meet at irregular times.
There are 288 time slots covering the whole day, from midnight to midnight.

A class can meet several times a week during certain weeks of the semester.
In such a case, all meetings of a class start at the same time, run for the same
number of slots and are placed in the same room. Examples of possible time
assignments of a class are listed in Figure [2| Each time is specified by its
starting time slot start within a day and the duration length in the number
of time slots. Days and weeks with a meeting are specified using the days and
weeks binary strings. For example, days 1010100 means that the class meets
three times a week (on Monday, Wednesday, and Friday) each week when it is
meeting. Similarly, weeks 0101010101010 specifies that the class would only
meet during even weeks of the semester (during the 2nd, the 4th, ..., and the
12th week of the semester).

<class id="1" limit="20">
<!-- Monday-Wednesday-Friday 7:30 - 8:20 All Weeks -->
<time days="1010100" start="90" length="10" weeks="1111111111111" penalty="20"/>
<!-- Tuesday-Thursday 9:00 - 10:15 All Weeks -->
<time days="0101000" start="108" length="15" weeks="1111111111111" penalty="0"/>
<!--Thursday 8:00 - 9:50 Even Weeks-->
<time days="0001000" start="96" length="22" weeks="0101010101010" penalty="2"/>
</class>

Fig. 2 XML specification of possible times when a class can meet

Having this representation of time, we define what it means when two
classes overlap. Two classes overlap when they share at least one week, at
least one day of the week and they overlap within this day in their time slots
using the start and length of the classes. More information can be found in
the description of distribution preferences (see Section .

3.2 Rooms

Each room is specified by its id and capacity. A room may not be available
at certain times, which is given by the unavailable elements using the days



6 T. Miiller, H. Rudové, Z.Miillerova

of the week, the start time slot and its length, during the weeks of the
semester. Non-zero travel times from other rooms are specified by the travel
elements from a room having a certain value which expresses the number of
time slots that it takes to get from one room to the other. Travel times are
expected to be symmetric and are listed only on one of the rooms. See Figure
for an example.

<rooms>
<room id="1" capacity="50"/>
<room id="2" capacity="100">

<travel room="1" value="2"/> <!-- travel time is in the number of slots -->
</room>
<room id="3" capacity="80">

<travel room="2" value="3"/> <!-- only non-zero travel times are present -->

<!-- not available on Mondays and Tuesdays betwen 8:30 - 10:30, all weeks -—>
<unavailable days="110000" start="102" length="24" weeks="1111111111111"/>
<!-- not available on Fridays betwen 12:00 - 24:00, odd weeks only -->
<unavailable days="000100" start="144" length="144" weeks="1010101010101"/>
</room>
</rooms>

Fig. 3 XML specification of the rooms available, including their availability and travel
times

A class cannot be placed in a room when its assigned time overlaps with
an unavailability of the room or when there is some other class placed in the
room at an overlapping time. Besides available times, each class also has a
list of rooms where it can be placed as shown in Figure [l] Each class needs
one time and one room assignment from its list of possible assignments. It is
possible for a class to only need a time assignment and no room. In this case,
there are no rooms listed and the room attribute of the class is set to false.

<class id="1" 1limit="20">

<room id="1" penalty="20"/>
<room id="3" penalty="0"/>
</class>
<class id="2" 1limit="10" rooms="false"/>

Fig. 4 XML specification of possible rooms where a class can be placed

3.3 Courses

Courses may have a very complex hierarchical structure of classes, i.e., events
to be scheduled. Example of one course ME 263 with the corresponding XML
specification is shown in Figure

Each course (ME 263 in Figure [5]) has a unique id and consists of one or
more configurations named config in the XML (Lec-Rec and Lec-Rec-Lab)
and identified by their unique id such that each student attends (some)



University course timetabling and ITC 2019 7

Introduction to Mech. Eng. ME 263

Lec-Rec ‘ Lec-Rec-Lab
1_Lecture 3_Lecture
2_Recitation 4 _Recitation
5_Laboratory
Lecl Lec2 Lec3
Recl Rec2 Rec3 Recd Recb Rec6
Labl Lab2
Lec4
Rec7 Rec8
Lab3 Lab4
<course id="ME 263">
<config id="1"> <!-- Lec-Rec configuration, not linked (any Lec with any Lab) -->
<subpart id="1_Lecture"> <!-- Lecture subpart -->

<class id="Lecl" 1limit="100"/>
<class id="Lec2" 1limit="100"/>
</subpart>
<subpart id="2_Recitation"> <!-- Recitation subpart -->
<class id="Recl" limit="50"/>
<class id="Rec2" limit="50"/>
<class id="Rec3" limit="50"/>
<class id="Rec4" limit="50"/>

</subpart>

</config>

<config id="2"> <!-- Lec-Rec-Lab configuration, linked -->
<subpart id="3_Lecture"> <!-- Lecture subpart -->

<class id="Lec3" limit="100"/>
<class id="Lec4" limit="100"/>
</subpart>
<subpart id="4_Recitation"> <!-- Recitation subpart -->
<class id="Recb" parent="Lec3" limit="50"/>
<class id="Rec6" parent="Lec3" limit="50"/>
<class id="Rec7" parent="Lec4" limit="50"/>
<class id="Rec8" parent="Lec4" limit="50"/>
</subpart>
<subpart id="5_Laboratory"> <!-- Laboratory subpart -->
<class id="Labl" parent="Rec5" limit="50"/>
<class id="Lab2" parent="Rec6" limit="50"/>
<class id="Lab3" parent="Rec7" limit="50"/>
<class id="Lab4" parent="Rec8" limit="50"/>
</subpart>
</config>
</course>

Fig. 5 Example of hierarchical course structure with its XML specification

classes in one configuration only. Each configuration consists of one or more
subparts with their unique id (Lec-Rec-Lab configuration has three subparts
3_Lecture, 4 Recitation and 5_Laboratory). Each student must attend one
class from each subpart of a single configuration. All students of the course
configuration must be sectioned into classes of each subpart such that their
limit is not exceeded (one student attending configuration Lec-Rec must take
one class from each of its subparts 1_Lecture and 2 Recitation, e.g., Lecl
and Rec3). Each class has a unique id and belongs to one subpart (classes
Recb, Rec6, Rec7, and Rec8 belong to subpart 4 Recitation).

A class may have a parent class defined which means that a student which
attends the class must also attend its parent class. For example, Lab3 has the



8 T. Miiller, H. Rudové, Z.Miillerova

parent Rec7 which has the parent Lec4. This means that a student attending
Lab3 must also attend Rec7 and Lec4 and no other combination including Lab3
is allowed. On the other hand there is no parent-child relationship between
classes of subparts 1_Lecture and 2_Recitation, so a student may take any
lecture Lecl or Lec2 and any recitation Recl, Rec2, Rec3 or Recl.

In the described problem, the imposed course structure is needed only for
student sectioning, to be able to evaluate the possible combinations of classes
that a student needs to take. All the other constraints that could be derived
from the structure are already included in the distribution constraints of the
problem (see their description in Section as each institution may decide
to use a different set of constraints. These typically include:

— classes that are in a parent-child relation cannot overlap in time
(SameAttendees constraint is required, e.g., between any valid Lecture—
Laboratory—Seminar combination that a student can take),

— classes of a subpart need to be spread in time as much as possible
(NotOverlap constraint is placed between these classes imposing a penalty
for each pair of classes that overlap in time)

— the lecture may (or must) be placed before all the seminars
(Precedence constraint is placed between any pair of a lecture and a sem-
inar that a student can take).

Each class has defined a set of possible times when it can meet. Each
eligible time has specified its penalty which must be included in the overall
time penalization when the time is selected for the class (see Section [3.6).
Valid time specifications were described in Section [3.1

Each class has also defined a set of possible rooms where it can meet (room
may not be possibly needed). Each eligible room has given its penalty to be
included in the overall time penalization when selected (see Section . Valid
room specifications were given in Section [3.2

3.4 Students

Each student has a unique id and a list of courses that he or she needs to
attend. Each course is specified by its course id. See Figure [f]for an example.

<student id="1">
<course id="1"/>
<course id="5"/>
</student>
<student id="2">
<course id="1"/>
<course id="3"/>
<course id="4"/>
</student>

Fig. 6 XML specification of students and their courses



University course timetabling and ITC 2019 9

A student needs to be sectioned in one class of every subpart of a single
configuration for each course from his or her list of courses. If a parent-child
relation between classes of a course is specified, this relation must be respected
as well (see also Section [3.3). Also, the number of students that can attend
each class is constrained by the 1imit that is part of the class definition.

A student conflict occurs when a student is enrolled in two classes that
overlap in time (they share at least one week and one day of the week and
they overlap in time of a day) or they are one after the other in rooms that
are too far apart. This means that the number of time slots between the two
classes is smaller than the travel time value between the two rooms. Student
conflicts are allowed and penalized. The same penalty of one student conflict
occurs for any pair of classes that a student cannot attend, regardless of the
number of actual meetings that are in conflict or the length of the overlapping
time.

3.5 Distribution constraints

Besides the already described time and room constraints and student course
demands, there are the following distribution constraints that can be placed
between any two or more classes. Any of these constraints can be either hard
or soft. Hard constraints cannot be violated and are marked as required. Soft
constraints may not be satisfied and there is a penalty for each violation. See
Figure [7] for example.

<distributions>
<!-- classes 1 and 2 cannot overlap in time -->
<distribution type="NotOverlap" required="true">
<class id="1"/>
<class id="2"/>
</distribution>
<!-- class 1 should be before class 3, class 3 before class 5 —->
<distribution type="Precedence" penalty="2">
<class id="1"/>
<class id="3"/>
<class id="5"/>
</distribution>
</distributions>

Fig. 7 XML specification of the distribution constraints

The various distribution constraints are listed in the Table [[l Each con-
straint may affect the time of the day, the days of the week, the weeks of the
semester, or the room assigned. Constraints from the upper two sections of
the table are evaluated between individual pairs of classes. For example, if
three classes need to be placed at the same starting time, such a constraint
is violated if any two of the three classes start at different times. Distribution
constraints from the last section of the table need to consider all classes for
evaluation between which the constraint is created.



10 T. Miiller, H. Rudové, Z.Miillerova

Table 1 List of distribution constraint types with their parameters, their potential affect
on times, days, weeks, and rooms, as well as type of evaluation

Constraint Opposite Time Days Weeks Room Pairs
SameStart v V4
SameTime DifferentTime v - v
SameDays DifferentDays - Vv - - v
SameWeeks DifferentWeeks - - Vv - V4
SameRoom DifferentRoom - - - Vv v
Overlap NotOverlap 4 Vv 4 - v
SameAttendees v Vv v v v
Precedence Vv Vv Vv - V4
WorkDay (S) v v v - Vv
MinGap (G) v v v v
MaxDays (D) - Vv - - days over D
MaxDayLoad (S) V4 4 4 - slots over S
MaxBreaks (R,S) v Vv Vv - breaks over R
MaxBlock(M,S) 4 Vv 4 - blocks over M

When any of the constraints that can be validated on pairs of classes is
soft, the provided penalty is incurred for every pair of classes of the constraint
that are in a violation. In other words, if M pairs of classes do not satisfy the
distribution constraint, the total penalty for violation of this constraint is M x
penalty. It means that the maximal penalty for violation of one distribution
constraint is penalty X N x (N — 1)/2, where N is the number of classes in
the constraint.

SameStart Given classes must start at the same time slot, regardless of their
days of week or weeks. This means that C;.start = Cj.start for any two
classes C; and C; from the constraint; C;.start is the assigned start time slot
of a class C;.

SameTime Given classes must be taught at the same time of day, regardless
of their days of week or weeks. For the classes of the same length, this is the
same constraint as SameStart (classes must start at the same time slot). For
the classes of different lengths, the shorter class can start after the longer class
but must end before or at the same time as the longer class. This means that

(C;.start < Cj.start A Cj.end < Cj.end) V
(Cj.start < Cj.start A Cj.end < Cj.end)

for any two classes C; and C; from the constraint; C;.end = Cj.start +

C;.length is the assigned end time slot of a class C;.

DifferentTime Given classes must be taught during different times of day,
regardless of their days of week or weeks. This means that no two classes of
this constraint can overlap at a time of the day. This means that

(Cj.end < Cj.start) V (Cj.end < C}.start)



University course timetabling and ITC 2019 11

for any two classes C; and C; from the constraint.

SameDays Given classes must be taught on the same days, regardless of their
start time slots and weeks. In case of classes of different days of the week,
a class with fewer meetings must meet on a subset of the days used by the
class with more meetings. For example, if the class with the most meetings
meets on Monday—Tuesday—Wednesday, all others classes in the constraint can
only be taught on Monday, Wednesday, and/or Friday. This means that

((C;.days or Cj.days) = C;.days) V ((C;.days or C;.days) = C;.days)
for any two classes C; and C; from the constraint; C;.days are the assigned
days of the week of a class C;, doing binary ”or” between the bit strings.
DifferentDays Given classes must be taught on different days of the week,
regardless of their start time slots and weeks. This means that

(C;.days and C;.days) =0
for any two classes C; and C; from the constraint; doing binary ,,and” between

the bit strings representing the assigned days.

SameWeeks Given classes must be taught in the same weeks, regardless of their
time slots or days of the week. In case of classes of different weeks, a class with
fewer weeks must meet on a subset of the weeks used by the class with more
weeks. This means that

(C;.weeks or Cj.weeks) = C;.weeks) V (Cj.weeks or C;.weeks) = C;.weeks)

for any two classes C; and C; from the constraint; doing binary ”or” between
the bit strings representing the assigned weeks.

DifferentWeeks Given classes must be taught on different weeks, regardless
of their time slots or days of the week. This means that

(C;.weeks and C;.weeks) =0

for any two classes C; and C; from the constraint; doing binary ,,and” between
the bit strings representing the assigned weeks.

Overlap Given classes overlap in time. T'wo classes overlap in time when they
overlap in time of day, days of the week, as well as weeks. This means that

(Cj.start < Cj.end) A
(C;.start < Cj.end) A
((Cy.days and Cj.days) #0) A
((C;.weeks and C;.weeks) # 0)

for any two classes C; and C; from the constraint, doing binary ,,and” between
days and weeks of C; and Cj.



12 T. Miiller, H. Rudové, Z.Miillerova

NotOverlap Given classes do not overlap in time. Two classes do not overlap
in time when they do not overlap in time of day, or in days of the week, or in
weeks. This means that

(Ci.end < Cj.start) v

(Cj.end < Cj.start) \Y

((Cy.days and Cj.days) =0) V

((C;.weeks and C;.weeks) = 0)

for any two classes C; and C; from the constraint, doing binary ,,and” between
days and weeks of C; and Cj.

SameRoom Given classes should be placed in the same room. This means that
(Ci.room = Cj.room) for any two classes C; and C; from the constraint;
C;.room is the assigned room of C;.

DifferentRoom Given classes should be placed in different rooms. This means
that (Cj.room # Cj.room) for any two classes C; and C; from the constraint.

SameAttendees Given classes cannot overlap in time, and if they are placed
on overlapping days of week and weeks, they must be placed far enough so
that the attendees can travel between the two classes. This means that

(Cj.end + Cj.room.travel|[C;.room] < Cj.start) V
(Cj.end + Cj.room.travel[C;.room| < Cj.start) V
((C;.days and Cj.days) = 0) Y
((C;.weeks and C;.weeks) = 0)

for any two classes C; and C; from the constraint; C;.room.travel[C;.room|
is the travel time between the assigned rooms of C; and Cj.

Precedence Given classes must be one after the other in the order provided in
the constraint definition. For classes that have multiple meetings in a week or
that are on different weeks, the constraint only cares about the first meeting
of the class. That is,

— the first class starts on an earlier week or
— they start on the same week and the first class starts on an earlier day of
the week or
— they start on the same week and day of the week and the first class is
earlier in the day.
This means that
(first(C;.weeks) < first(C;.weeks)) Y
[ (first(Cj.weeks) = first(C;.weeks)) A
[ (first(C;j.days) < first(Cj.days)) V
((first(Cj.days) = first(Cj.days)) A
]
]

for any two classes C; and C; from the constraint where ¢ < j and first(z)
is the index of the first non-zero bit in the binary string x.

(Ci.end < Cj.start))



University course timetabling and ITC 2019 13

WorkDay (S) There should not be more than S time slots between the start
of the first class and the end of the last class on any given day. This means
that classes that are placed on the overlapping days and weeks that have more
than S time slots between the start of the earlier class and the end of the later
class are violating the constraint. That is

((C;.days and Cj.days) = 0) Y
((C;.weeks and C;j.weeks) = 0) \Y
(max(Cj.end, Cj.end) — min(C;.start, Cj.start) < S)

for any two classes C; and C; from the constraint.

MinGap(G) Any two classes that are taught on the same day (they are placed
on overlapping days and weeks) must be at least G slots apart. This means
that there must be at least G slots between the end of the earlier class and the
start of the later class. That is

((Cy.days and Cj.days) =0) V
((C;.weeks and Cj.weeks) =0) V
(Ci.end + G < Cj.start) v
(Cj.end + G < C}.start)

for any two classes C; and C; from the constraint.

MaxDays (D) Given classes cannot spread over more than D days of the week,
regardless whether they are in the same week of semester or not. This means
that the total number of days of the week that have at least one class of this
distribution constraint C,...,C, is not greater than D,

countNonzeroBits(C}.days or Cy.days or -+ C,.days) <D

where countNonzeroBits(z) returns the number of non-zero bits in the bit
string . When the constraint is soft, the penalty is multiplied by the number
of days that exceed the given constant D.

MaxDayLoad(S) Given classes must be spread over the days of the week (and
weeks) in a way that there is no more than a given number of S time slots
on every day. This means that for each week w € {0,1,... ,nrWeeks — 1} of
the semester and each day of the week d € {0,1,...,nrDays — 1}, the total
number of slots assigned to classes C' that overlap with the selected day d and
week w is not more than S,

DayLoad(d,w) < S
DayLoad(d,w) =
>, {Ci.length|(C;.days and 2?) # 0 A (C;.weeks and 2) # 0)}

where 2% is a bit string with the only non-zero bit on position d and 2% is a
bit string with the only non-zero bit on position w. When the constraint is
soft (it is not required and there is a penalty), its penalty is multiplied by the



14 T. Miiller, H. Rudové, Z.Miillerova

number of slots that exceed the given constant S over all days of the semester
and divided by the number of weeks of the semester (using integer division).
Importantly the integer division is computed at the very end. That is

penalty X Z max(DayLoad(d, w) — 8,0) | /nrWeeks .

w,d

MaxBreaks(R,S) This constraint limits the number of breaks during a day
between a given set of classes (not more than R breaks during a day). For each
day of week and week, there is a break between classes if there is more than S
empty time slots in between.

Two consecutive classes are considered to be in the same block if the gap
between them is not more than S time slots. This means that for each week
w € {0,1,...,nrWeeks — 1} of the semester and each day of the week d €
{0,1,...,nrDays — 1}, the number of blocks is not greater than R + 1,

| MergeBlocks( { (C.start,C.end)|
(C.daysand 2?) # 0 A (C.weeks and 2¥) # 0
}P)I<R+1

where 27 is a bit string with the only non-zero bit on position d and 2¥ is a
bit string with the only non-zero bit on position w.

The MergeBlocks function recursively merges to the block B any two
blocks B, and By that are identified by their start and end slots that overlap
or are not more than S slots apart, until there are no more blocks that could
be merged.

(Bg.end + S > Bp.start) A (Bp.end+ S > B,.start) =
(B.start = min(B,.start, By.start)) A (B.end = max(B,.end, By.end))

When the constraint is soft, the penalty is multiplied by the total number of
additional breaks computed over each day of the week and week of the semester
and divided by the number of weeks of the semester at the end (using integer
division, just like for the MaxDayLoad constraint).

MaxBlock(M,S) This constraint limits the length of a block of consecutive
classes during a day (not more than M slots in a block). For each day of week
and week, two consecutive classes are considered to be in the same block if the
gap between them is not more than S time slots. For each block, the number
of time slots from the start of the first class in a block till the end of the last
class in a block must not be more than M time slots. This means that for each
week w € {0,1,...,nrWeeks — 1} of the semester and each day of the week
d € {0,1,...,nrDays — 1}, the maximal length of a block does not exceed
M slots

max( { B.end — B.start| B € MergeBlocks({(C.start,C.end)
| (C.daysand 2%) # 0 A (C.weeks and 2¥) # 0})
})<u



University course timetabling and ITC 2019 15

When the constraint is soft, the penalty is multiplied by the total number of
blocks that are over the M time slots, computed over each day of the week and
week of the semester and divided by the number of weeks of the semester at
the end (using integer division, just like for the MaxDayLoad constraint).

3.6 Feasible and optimal solution

Solution It is guaranteed that a feasible solution exists for each competition
problem. This means that it is possible to assign every class with one of the
available times as well as with one of the available rooms (unless the class
requires no room assignment) without breaking any of the hard constraints.
Moreover, all courses have enough space so that it is always possible to enroll
all students that request the course such that all class limits are respected.
There may, however, be student conflicts, violated soft distribution constraints
as well as time and room penalizations.

Each solution is described using the XML data format as shown in Figure[§]
Each solution must be identified by the name of the instance (matching the
problem name from Figure . There are also a few solution attributes that
can be used to analyze the solutions. These are the solver runtime in seconds,
the number of CPU cores that the solver employs (optional, defaults to 1),
the name of the solver technique or algorithm, the name of the competitor or
his/her team (called author), the name and the country of the institution
of the competitor. Note that neither the runtime nor the number of cores will
play any role in the decision about the winner or the finalists.

Each solution consists of a set of classes, each with a given id, a start
time slot, days of the week, weeks of the semester, a room and a list of ids
for all students who are expected to attend the class. Each student must be
enrolled in all the courses following the rules mentioned earlier (see Sections
and . All classes of the problem must be present and contain a time and
a room assignment from their domain.

<?xml version="1.0" encoding="UTF-8"7>
<solution name="unique-instance-name"
runtime="12.3" cores="4" technique="Local Search"
author="Pavel Novak" institution="Masaryk University" country="Czech Republic">
<class id="1" days="1010100" start="90" weeks="1111111111111" room="1">
<student id="1"/>
<student id="3"/>
</class>
<class id="2" days="0100000" start="86" weeks="0101010101010" room="4">
<student id="2"/>
<student id="4"/>
</class>
<class id="3" days="0010000" start="108" weeks="0100000000000">
<student id="1"/>
</class>
</solution>

Fig. 8 XML specification of the solution



16 T. Miiller, H. Rudové, Z.Miillerova

It is also possible to encapsulate the solution within the problem instance
like it is shown in Figure[9] In this case, the solution validation can run against
the described problem instead of the problem of the matching name from the
competition instance database. This could be useful for debugging certain
aspects of the problem.

<?xml version="1.0" encoding="UTF-8"7>
<problem name="unique-instance-name" nrDays="7" nrWeeks="13" slotsPerDay="288">
<solution>
<class id="1" days="1010100" start="90" weeks="1111111111111" room="1">
<student id="1"/>
<student id="3"/>
</class>
</solution>
</problem>

Fig. 9 XML specification of the solution for a modified problem

Optimization The problem has several optimization criteria, see Figure
The selection of a time for each class is associated with a penalty. The sum of
these penalties for all classes represents the time penalization criterion. The
selection of a room for each class can also be related to some penalty, and their
summarization represents the room penalization criterion. Penalties for all dis-
tribution constraints are as well summarized for each solution and represent
the distribution constraint criterion. Last but not least, it is important to
take into account students who cannot attend some of their enrolled courses.
The student conflict minimization criterion counts for all students all pairs
of classes which the student cannot attend because the two classes overlap in
time or are close to each other in rooms that are too far apart (same condition
as in the SameAttendees distribution constraint described in Section .

<optimization time="2" room="1" distribution="1" student="2"/>

Fig. 10 XML specification of weights for the optimization criteria

The importance of each criterion differs based on the institution. To handle
that, each criterion is associated in the problem definition with its weight. The
weighted sum of all criteria is to be minimized. While the possible minimum
corresponds to zero, it is not typically achieved because it is not possible to
handle all components perfectly without any penalization.

4 Characteristics of data sets

This section discusses the most typical differences among data sets which will
be present in the competition as well as simplifications of the real-life data



University course timetabling and ITC 2019 17

that have been introduced in the competition problem. As already mentioned,
these changes were made to remove some of the difficulties of the problem
formulation while retaining the computational complexity of the problem.

4.1 Differences among data sets

Size of the problem The size of the problem is the first significant characteristic
of the data sets. Problem instances that consider only one school or faculty
may involve about 500 classes, 2,000 students, and 50 rooms. Other problems
that represent timetabling for a large part of a university may consists of up
to 2,500 classes, 32,000 students, or 200 rooms.

Room utilization For some problem instances, it is not the size of the problem
as such, but the high room utilization that makes the problem difficult to
solve. In some of these instances, it is not the overall utilization, but there
are clusters of rooms that are in high demand. Large classrooms are a typical
example of rooms with high utilization. In other problems, utilization may not
be the critical part of the problem, and the optimization component is more
emphasized.

Student course demands The real-life data may have the student course de-
mands collected from various sources. Some problems consider pre-enrollments
of students to courses or last year’s student course enrollments. These can be
very diverse and may introduce a high violation of student requests as there
can be a few students found for pretty much any conceivable combination of
two courses.

On the other hand, student course requests can be based on curricula re-
quirements which are typically easier to satisfy. There are large groups of
students taking the same or a very similar set of courses as they are following
the same program of study. Curricula at such schools may be rather standard
with some compulsory and optional courses. However, other schools may con-
struct combinations of curricula for students which may be harder to satisty
for a few atypical combinations.

As an example, we consider a school of education where students that
are training to be high school teachers always have two majors representing
two different subjects such as Mathematics and Chemistry. Typical combi-
nations, such as Mathematics—Physics or English-History may involve many
students. Some other, less popular combinations like Music-Chemistry or Art—
Mathematics, have only a few students. This results in a very diverse set of
student course demands.

Lastly, there may be problem instances that have no student course de-
mands at all. In these cases, the required distribution of classes is usually
achieved with the distribution constraints, typically using the SameAttendees
or the NotOverlap constraints.



18 T. Miiller, H. Rudové, Z.Miillerova

Course structure Many universities have a very simple structure of courses.
A course typically consists of one lecture. Or it is a set of seminars where each
student must be sectioned to a particular seminar. The most complex cases
introduce a course with one lecture to be attended by all students and several
seminars to which the students are to be sectioned.

Some other universities have a complex course structure for some courses as
introduced in Section [3.3] For example, there can be an introductory Biology
course that is offered to most freshmen students at the university. Such a course
may have a couple of large lectures that are needed to cover the student
demand. Besides a lecture, each student may need to take a laboratory and
a seminar which are typically taught for much smaller groups of students.
The parent-child relations may be used to link students of particular pairs of
a laboratory and a seminar together so that the same instructor can teach
them. The course can also be offered in multiple configurations.

Times Each institution may use time in different patterns. While some prob-
lems have the time of the day split into a nice set of non-overlapping teaching
hours, other institutions may allow a class to start at various times (e.g., at
any quarter of an hour). Some classes can meet only once a week; others can
have multiple meetings, following the same start time, same length and same
room schema which allows us to model such meetings as a single class. Simi-
larly, different institutions may make different use of the weeks of the semester.
While most classes are typically offered during all the weeks of the semester,
there can be classes offered only during the first or the last half of the semester,
during even or odd weeks, or even just once during a particular week.

For example, European institutions tend to have their classes once a week
for a longer time period such as 2 hours. On the other hand, institutions in
the United States typically have classes several times a week such as Monday—
Wednesday—Friday, Tuesday—Thursday or Monday—Friday following the above
described pattern.

Distance learning may offer an example of a rather specific use of the time
that may be seen in the problem instances. Here, the students only come
to school once a week or once every two weeks (e.g., every Friday or Satur-
day), and have all their classes during that day. Each distance learning course
may have only two or three meetings during the semester which occur on
different weeks. Each of these meetings is usually modeled as a single class
and they are linked with additional distribution constraints (e.g., required
DifferentWeeks).

Travel times A classical problem of one school involves all the rooms situ-
ated in one building. More complex problems may consider several buildings
or a campus where classes need to consider non-negligible travel times. Some
exceptional schools such as a school of sports studies may involve many sports
facilities spread over the city and consideration of travel times introduces a cru-
cial part of the problem solution.



University course timetabling and ITC 2019 19

Distribution constraints Problem instances may differ by the importance and
the amount of distribution constraints. Some schools may use many distribu-
tion constraints, while others do not rely on them so heavily. For example,
some problems rely on the WorkDay, the MaxBlock and the MaxDayLoad con-
straints to provide good schedules for instructors, while other problems may
not contain these three particular constraints at all.

4.2 Transformations of real-life data into the competition problems

In order to make the problem instances easier to model and to work with,
a number of less important features have been removed or simplified. The aim
was to simplify the problem formulation while maintaining the computational
complexity of the problems. The most important changes are summarized
below.

Rooms In reality, the computation of what rooms are available for a class
is quite complex. For instance, only rooms of a particular room type can
be considered; they must have the necessary equipment, be of a particular
building or location at the campus, etc. Also, only certain departments may
be allowed to use a particular room, and the room must be big enough for the
class to fit in. Some classes may have a room ratio defined that further refines
the relation between the minimal size of the room and the class limit. For
example, it is possible for the room capacity to be smaller than the class limit
when it is expected that only half of the students would actually show up for
the class. Similarly, there can be preferences set on the type of the room, its
location, equipment, etc. All these characteristics have been combined together
to create a list of rooms that are acceptable for the class and to compute their
individual penalties.

The penalization also includes additional optimization criteria which may
be present in the original problems. For instance, there is a penalization for
rooms with bigger size than what the class needs, this penalization is pro-
portional to the size of excessive space. Also, some rooms may generally be
discouraged which is also implemented by their high penalization, while the
original problem tries to minimize the overall use of such rooms. An additional
optimization criterion, though with a very small weight, may be applied to op-
timize the space left in the rooms. For instance, gaps that are shorter than
one teaching hour are penalized.

In some of the original problems, the sharing of a room between two or more
departments can be more refined, allowing a department to have exclusive use
of the room during certain times of the week. In the competition problem, all
classes of the departments that share a room can use the room during the time
when the room is available, given that the other class requirements are met
(class limit, required room type, equipment, etc.).



20 T. Miiller, H. Rudové, Z.Miillerova

Travel times Many problem formulations involve distances, which could be
defined on both buildings and rooms as GPS coordinates, or between pairs
of these locations as travel times that are typically expressed in minutes. In
order to anonymize the data sets, all distances have been converted into travel
times, which also makes it easier for the conflict checking (for both the stu-
dent conflicts and the SameAttendees constraint) as the travel time can be
easily compared with the gap between two consecutive classes. In the original
problem, there is an additional optimization criterion checking for instructor
distances between two rooms for classes that are being taught immediately
one after the other, considering the distance in meters. This has been replaced
with the SameAttendees constraint in the competition problems.

Times Time penalization is also adjusted. For example, considered penalties
may combine the individual time preferences set on the class with the default
time penalties specified in each problem. For instance, early morning and late
evening times are usually discouraged with a small penalty.

Distribution constraints A large part of the transformations relates to the dis-
tribution constraints. A few rarely used constraints have been removed from
the formulation completely, others have been simplified or transformed into
other existing constraints. For instance, we have the Back-to-Back constraint
in the original problems making sure that all given classes are placed on the
same day, one after the other. This constraint has been translated using the
SameDays and WorkDay constraints, modeling the same thing (when fully sat-
isfied) with more straightforward penalization. Similarly, the original problem
allows for two classes to meet together in a room when the room is big enough.
In this case, both the room and the assigned instructor or instructors are fine
with the overlap. In the competition problem this has been translated as fol-
lows:

— When two (or more) classes are required to meet together, the first class
can only be put in a room that fits all classes of the constraint, and the
remaining classes have no room and no instructor (if the same instructor
is assigned). All these classes are tight together with required SameStart,
SameDays, and SameWeeks constraints.

— When two (or more) classes can meet together, but the meeting is not
required, the room sharing component gets either ignored (if it is possible
to assign the classes in different rooms) or the same transformation is done
as when the constraint is required.

The NextDay constraint offers an example of a constraint that got simplified. In
the original problem, it means that the classes of the constraint must be placed
on consecutive days. However, based on the configuration, the constraint may
or may not ignore weeks and weekends (Friday can be followed by Monday on
the next week). Consideration of classes with multiple days of the week is also
complicated. In the problem instances, this constraint has been replaced by
the Precedence and the DifferentDays constraint.



University course timetabling and ITC 2019 21

Students In the original problem, reservations can be used to restrict certain
students to some of the classes of the course. These can be based on the various
student properties such as a program of study, an academic year, a major or a
group affiliation. While these reservations create a considerable complication
for student scheduling, the reservations do not get used often enough to justify
the complication of the problem formulation.

In some problems, certain student conflicts may be prohibited. This means
that two classes are prohibited to conflict when the number of students at-
tending both classes is too great, typically expressed as a percentage of the
size of the smaller class.

In some problems, there is an additional criterion that tries to keep students
of the same curriculum or student group together. This is a very recent addition
to the problem formulation, so most of the original problems do not use it yet.

Instructors Instructors are modeled using the SameAttendees distribution
constraints, i.e. classes of one instructor cannot overlap in time or be one
after the other in rooms that are too far away (there are fewer time slots in
between than the travel time).

Other aspects A few additional constraints and criteria may be present in the
original problems. These are usually very specific to a particular institution
and would require additional information about the problem to be included in
the data. Such aspects have also been removed from the competition instances,
or where possible, replaced by the existing constructs.

For example, various student conflicts may have different weights in some
problems. These could be conflicts between courses that offer no or only a small
number of options. Or, there could be a higher weight for students of a cur-
riculum for which at least one of the two courses is mandatory, and the other
course is either mandatory or an elective. Similarly, conflicts between two elec-
tives or conflicts with an optional course can be considered less important. For
the competition instances, we have decided it is sufficient that the core cur-
riculum courses typically have a high number of students in common, resulting
in higher student conflict penalties when there is not enough space offered in
non-conflicting times.

5 Organization of the competition

The competition will have its website maintained at Masaryk University and
it will be available from http://www.itc2019.o0rg. The website will contain
the description of the competition, the rules, and the data instances that have
been published so far. It will also include a web service that will validate the
solutions for the competition problems and will allow for the valid solutions to
be uploaded to the website. The best uploaded solution for each competitor
and instance will be used for the ranking of the competitors, and it will be
published on the competition website once the competition is concluded.


http://www.itc2019.org

22 T. Miiller, H. Rudové, Z.Miillerova

Three groups of data sets will be published during the competition. While
the order of the competitors will be based on all the published data instances,
the instances released later in the competition will have a much higher weight
in the final ranking. Some anonymized information, like the values of the best-
known solutions that have been gathered by the validator service so far, may
be published at certain points of the competition. The solution validator is
based on the UniTime solver [29]. Additional information with some important
characteristics of the data will be published together with the data sets. Our
goal is to maintain the website with results after the competition similarly to
earlier competitions on curriculum-based [5] or high-school [21] timetabling.

We expect the following timeline.

The competition is announced at PATAT 2018 in August 2018.

The first group of the data sets is published on November 15, 2018.

The second group of the data sets is published on September 18, 2019.

The third group of the data sets is published on November 8, 2019.

Competition teams submit their final results for all the competition in-

stances by November 18, 2019. All teams also submit a short report summa-

rizing their implementation (3—5 pages in the PATAT typesetting style).

Finalists are published and winners are informed by January 15, 2020.

7. Competitors, as well as other people, are invited to submit their paper to
a track at PATAT 2020 related to the competition.

8. Winners are announced at PATAT 2020.

9. The finalists are encouraged to submit their PATAT 2020 paper to the

journal post-conference publication.

G o=

&

As we have mentioned, the website will also contain rules of the com-
petition. The finalists and the winner will be determined according to the
competition rules.

6 Conclusion

The International Timetabling Competition 2019 is aimed at solving common
university course timetabling problems from practice. A wide set of features
is considered. The key novelty lies in the combination of student sectioning
together with standard time and room assignment of events in courses. As
a part of the competition, we would like to collect an interesting set of data
which will enrich further research.

While the new competition is based on ideas of the previous competitions,
some important aspects are different. In particular, we do not constrain the
time needed to compute solutions, the number of CPU cores or machines that
the solver can use. At the same time, we do not expect to run solvers of the
competitors on our hardware. We may ask to see the source code of solvers for
the finalists.

Even though it may be tricky to allow arbitrary computational time, we
believe that this format has important advantages for advancements in the



University course timetabling and ITC 2019 23

future research and practice of timetabling. We will summarize them in the
final paragraphs of the paper.

When different solvers are compared, the solution quality is always instru-
mental. Even the current websites are comparing the best solutions by merely
comparing their quality [2IL5]. While the computational time may also be
important, its comparison is very tricky, especially after the competition. We
will ask the competitors to include the computational time in the solution,
but it will not play any role in the decision about the winner or the finalists.
The biggest downside of the time limits (together with the maximal number
of executions) is undoubtedly their incorrect interpretation or reproducibility
of the results, especially by other researchers.

An important aspect of modern solvers is parallelism. While the previous
competitions were not able to handle this feature, it is possible to consider it
now. This can support the development of new advanced solvers with parallel
features.

Last but not least, commercial solvers that are commonly used in practice
were not eligible in the earlier competitions. By allowing commercial solvers,
we would like to encourage a larger community to participate in the competi-
tion. It will be certainly interesting to compare the results of the commercial
solvers with the other ones.

Acknowledgements We would like to thank for the sponsorship of the PATAT confer-
ence and the EURO working group on Automated Timetabling (EWG PATAT). We also
acknowledge Masaryk University which provided resources for maintenance of the competi-
tion website. Our great thanks go to all institutions which provided the data; this is essential
for organization of the competition. The institutions will be published with the publication
of the data.

References

1. EWG PATAT, EURO working group on automated timetabling. https://www.
euro-online.org/web/ewg/14/ewg-patat-euro-working-group-on-automated-
timetabling

2. PATAT conferences. http://patatconference.org/

3. Bettinelli, A., Cacchiani, V., Roberti, R., Toth, P.: An overview of curriculum-based
course timetabling. TOP 23(2), 313-349 (2015)

4. Bonutti, A., De Cesco, F., Di Gaspero, L., Schaerf, A.: Benchmarking curriculum-based
course timetabling: formulations, data formats, instances, validation, visualization, and
results. Annals of Operations Research 194(1), 59-70 (2012)

5. Bonutti, A., Gaspero, L.D., Schaerf, A.: Curriculum-based course timetabling. http:
//tabu.diegm.uniud.it/ctt/

6. Burke, E., Petrovic, S.: Recent research directions in automated timetabling. European
Journal of Operational Research 140(2), 266—280 (2002)

7. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes,
A.J., Petrovic, S.: The cross-domain heuristic search challenge — an international re-
search competition. In: C.A.C. Coello (ed.) Learning and Intelligent Optimization, pp.
631-634. Springer (2011)

8. Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S., Schaerf, A.: The second
international nurse rostering competition. Annals of Operations Research (2018). First
online


https://www.euro-online.org/web/ewg/14/ewg-patat-euro-working-group-on-automated-timetabling
https://www.euro-online.org/web/ewg/14/ewg-patat-euro-working-group-on-automated-timetabling
https://www.euro-online.org/web/ewg/14/ewg-patat-euro-working-group-on-automated-timetabling
http://patatconference.org/
http://tabu.diegm.uniud.it/ctt/
http://tabu.diegm.uniud.it/ctt/

24

T. Miiller, H. Rudové, Z.Miillerova

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. Gaspero, L.D., McCollum, B., Schaerf, A.: The second international timetabling com-

petition (ITC-2007): Curriculum-based course timetabling (track 3). Tech. Rep.
QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0, Queen’s University, Belfast (2007)
Haspeslagh, S., De Causmaecker, P., Schaerf, A., Stglevik, M.: The first international
nurse rostering competition 2010. Annals of Operations Research 218(1), 221-236
2014

](i(ings)ton7 J.H.: Educational timetabling. In: A.S. Uyar, E. Ozcan, N. Urquhart (eds.)
Automated Scheduling and Planning: From Theory to Practice, pp. 91-108. Springer
Berlin Heidelberg (2013)

Lewis, R.: A survey of metaheuristic-based techniques for university timetabling prob-
lems. OR Spectrum 30(1), 167-190 (2008)

Lewis, R., Paechter, B., McCollum, B.: Post enrolment based course timetabling: A de-
scription of the problem model used for track two of the second international timetab-
ling competition. Cardiff Working Papers in Accounting and Finance A2007-3, Cardiff
Business School, Cardiff University (2007)

McCollum, B., McMullan, P., Burke, E.K., Parkes, A.J., Qu, R.: The second In-
ternational Timetabling Competition: Examination timetabling track. Tech. Rep.
QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s University, Belfast (2007)
McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero,
L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The
second international timetabling competition. INFORMS Journal on Computing 22(1),
120-130 (2010)

Miiller, T.: ITC2007 solver description: a hybrid approach. Annals of Operations Re-
search 172(1), 429 (2009)

Miiller, T., Rudov4, H.: Real-life curriculum-based timetabling with elective courses and
course sections. Annals of Operations Research 239(1), 153-170 (2016)

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J., Walker, J., Gendreau, M.,
Kendall, G., McCollum, B., Parkes, A., Petrovic, S., Burke, E.: HyFlex: A Benchmark
Framework for Cross-domain Heuristic Search. In: J.K. Hao, M. Middendorf (eds.) Eu-
ropean Conference on Evolutionary Computation in Combinatorial Optimisation (Evo-
COP 2012), Lecture Notes in Computer Science, vol. 7245, pp. 136-147. Springer (2012)
Paechter, B., Gambardella, L.M., Rossi-Doria, O.: International timetabling competition
2002 (2002). http://sferics.idsia.ch/Files/ttcomp2002/

Pillay, N.: A survey of school timetabling research. Annals of Operations Research
218(1), 261-293 (2014)

Post, G.: Benchmarking project for (high) school timetabling. https://www.utwente.
nl/ctit/hstt/

Post, G., Ahmadi, S., Daskalaki, S., Kingston, J.H., Kyngas, J., Nurmi, C., Ranson,
D.: An XML format for benchmarks in high school timetabling. Annals of Operations
Research 194(1), 385-397 (2012)

Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third inter-
national timetabling competition. In: Practice and Theory of Automated Timetabling
2012 Proceedings, pp. 479-484 (2012)

Post, G., Kingston, J.H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi, C.,
Musliu, N., Pillay, N., Santos, H., Schaerf, A.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research 218(1),
295-301 (2014)

Rudové, H., Miiller, T., Murray, K.: Complex university course timetabling. Journal of
Scheduling 14(2), 187-207 (2011)

Rudové, H., Murray, K.: University course timetabling with soft constraints. In:
E. Burke, P. De Causmaecker (eds.) Practice and Theory of Automated Timetabling
IV, pp. 310-328. Springer Berlin Heidelberg (2003)

Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2),
87-127 (1999)

Schmidt, G., Strohlein, T.: Timetable construction — an annotated bibliography. Com-
puter Journal 23(4), 307-316 (1980)

UniTime: University timetabling — Comprehensive academic scheduling solutions. http:
//unitime.org

de Werra, D.: An introduction to timetabling. European Journal of Operational Re-
search 19(2), 151-162 (1985)


http://sferics.idsia.ch/Files/ttcomp2002/
https://www.utwente.nl/ctit/hstt/
https://www.utwente.nl/ctit/hstt/
http://unitime.org
http://unitime.org

University course timetabling and ITC 2019

Appendix: Sample XML format

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE problem PUBLIC
"-//Course Timetabling Competition//DTD Problem Format/EN"
"http://www.unitime.org/interface/competition-format.dtd">
<t--=
Competition Problem Format
It includes a unique name of the instance, number of days of the week, number
of weeks of the semester, and the number of time slots during a days.
In this example, each time slot takes 5 minutes and they go from
midnight to midnight. This is typical for all the competition instances,
however, the problem format allows for variation.
-=>
<problem name="unique-instance-name" nrDays="7" nrWeeks="13" slotsPerDay="288">
<=
Optimizatio Weights: These are the weights on the total penalty of assigned
times, assigned rooms, violated soft distribution constraints,
and the number of student conflicts.
-=>
<optimization time="2" room="1" distribution="1" student="2"/>

<t--
List of Rooms: Each room has a unique id, capacity, availability and
travel times.
-=>
<rooms>
<room id="1" capacity="50"/>
<room id="2" capacity="100">
<t--
Travel time to another room is in the number of time slots
it takes to travel from this room to the other room. All distances are
symmetrical, and only non-zero distances are present.
-—=>
<travel room="1" value="2"/>
</room>
<room id="3" capacity="80">
<travel room="2" value="3"/>
<!-- Availability: list of times when the room is not available -->
<!-- Not available on Mondays and Tuesdays, 8:30 - 10:30, all weeks -—>
<unavailable days="1100000" start="102" length="24" weeks="1111111111111"/>
<!-- Not available on Fridays, 12:00 - 24:00, odd weeks only -->
<unavailable days="0001000" start="144" length="144" weeks="1010101010101"/>
</room>
<l-— .. ==
</rooms>

<t--
List of Classes that are to be timetabled, including their course structure.
Each course has one or more configurations, each configuration has one or
more scheduling subparts, and each subpart has one or more classes.
All ids are sequentially generated and unique (for each type) within the XML
file. A class may have a parent id if there is a parent-child relation
defined.
-—=>
<courses>
<course id="1">
<config id="1">
<subpart id="1">
<l--
Each class has a limit and a list of availabile rooms and times,
each with a penatly. Only rooms that are big enough and meet all
the requirements (room type, required equipment, etc.) are listed.
Each class needs to be assigned to one room and one time from these.
-—=>
<class id="1" limit="20">
<room id="1" penalty="0"/>
<room id="2" penalty="10"/>



26 T. Miiller, H. Rudové, Z.Miillerova

<t--
Each time has days of the week (as bit string, starting on Monday),
time of the day (start slot and length), and weeks of the semester
(also a bit string: week 1, week 2, ... ).
-->
<!-- MWF 7:30 - 8:20 all weeks -->
<time days="1010100" start="90" length="10" weeks="1111111111111"
penalty="0"/>
<!-- TTh 8:00 - 9:15 all weeks -—>
<time days="0101000" start="96" length="15" weeks="1111111111111"
penalty="2"/>
</class>
<t--
The second class of the same course, configuration, and subpart.
Alternative to class 1.
-=>
<class id="2" limit="20">
<room id="4" penalty="0"/>
<!-- Mon 7:10 - 8:40 even weeks -->
<time days="1000000" start="86" length="18" weeks="0101010101010"
penalty="0"/>
<!-- Tue 7:10 - 8:40 even weeks -->
<time days="0100000" start="86" length="18" weeks="0101010101010"
penalty="0"/>
</class>
</subpart>
<subpart id="2">
<I--
Child of class 1: a student taking class 3 must also take class 1.
Classes may have no rooms, these are only to be assingned with a time.
-=>
<class id="3" parent="1" room="false">
<!-- Fri 8:00 - 9:50 first week -->
<time days="0000100" start="96" length="22" weeks="1000000000000"
penalty="2"/>
<!-- Wed 9:00 - 10:50 second week -->
<time days="0010000" start="108" length="22" weeks="0100000000000"
penalty="0"/>
</class>
<l== ... ==>
</subpart>
</config>
</course>
<l== .. ==
</courses>

<I--
List of Distribution Constraints: a distribution constraint can be hard
(required=true) or soft (has a penalty). For most soft constraints,
a penalty is incurred for each pair of classes that violates the constraint.

-
<distributions>
<!-- Classes 1 and 2 cannot overlap in time -->

<distribution type="NotOverlap" required="true">
<class id="1"/>
<class id="2"/>
</distribution>
<!-- Class 1 should be before class 3, class 3 before class 5 -->
<distribution type="Precedence" penalty="2">
<class id="1"/>
<class id="3"/>
<class id="5"/>
</distribution>
<t--
Instructors are modeled using the SameAttendees constraint: Classes cannot
overlap in time or be one after the other in rooms that are too far away
(there are fewer time slots in between than the travel time).
-=>



University course timetabling and ITC 2019 27

<distribution type="SameAttendees" required="true">
<class id="1"/>
<class id="12"/>

</distribution>

<!-- Classes cannot span more than two days of the week -->

<distribution type="MaxDays(2)" required="true">
<class id="5"/>
<class id="8"/>
<class id="15"/>

</distribution>

<l== .. ==

</distributions>

<I--
Student Course Demands: Each student needs a class of each subpart of one
configuration of a course. Parent-child relation between classes must be
used when defined.

-—>
<students>
<!-- Each student has a list of courses he/she needs. -->

<student id="1">
<course id="1"/>
<course id="5"/>

</student>

<student id="2">
<course id="1"/>
<course id="3"/>
<course id="4"/>

</student>

<l== .. ==>

</students>

<1--
Solution: A solution contains a list of classes with their assignments.
There are also a few solution attributes that can be used to identify the
solution. These are:
- problem name (only needed when the XML does not contain the problem,
i.e., solution is the root element)
- solver runtime in seconds,
- number of CPU cores that the solver employs (optional, defaults to 1),
- name of the solver technique/algorithm,
- name of the competitor or his/her team,
- and the name and the country of the institution of the competitor

<solution

name="unique-instance-name"
runtime="12.3" cores="4" technique="Local Search"
author="Pavel Novak" institution="Masaryk University" country="Czech Republic">

<t--
Each class has an assigned time and (when there are rooms) an assigned
room. Both must be from the domain of the class. There is also a list of
students enrolled in the class.

-—>

<class id="1" days="1010100" start="90" weeks="1111111111111" room="1">
<student id="1"/>
<student id="3"/>

</class>

<class id="2" days="0100000" start="86" weeks="0101010101011" room="4">
<student id="2"/>
<student id="4"/>

</class>

<class id="3" days="0010000" start="108" weeks="0100000000000">
<student id="1"/>

</class>

<l== .. ==

</solution>
</problem>



	Introduction
	Our timetabling problems
	Problem description
	Characteristics of data sets
	Organization of the competition
	Conclusion

